Купили смесь сухофруктов из яблок и слив. Яблок в них 5 частей, слив- 4 части. Какова масса всей смеси из сухофруктов, если масса слив в смеси составляет 520?
Для того чтобы построить график функции, нужно сначала по ее формуле определить тип функции и форму её графика.
Как мы видим, в формуле присутствует деление на х, значит это степенная функция с гиперболической формой графика.
Почему степенная? потому что 1/х это то же самое, что и х⁻¹.
Также по формуле мы видим, что график сдвинут по оси у вверх на 2 единицы (+2 в конце).
И, наконец, множитель перед х в знаменателе, больший единицы, говорит о том, что изгиб гиперболы будет более крутым, чем в классической форме графика.
Непостредственно построение графика криволинейной функции выполняется по выборке точек. Причем, для промежутка х∈{-2,2] нужно вычислить несколько значений, желательно, не менее 6. Такая частота в этом промежутке нучна для плавного и более точного построения изгиба, т.к. оставшаяся часть по форме стремится к очень пологой кривой, почти прямой.
Для решения нужно вспомнить некоторые правила для сторон треугольников: a + b > c | a + c > b | b + c > a
Чтобы избежать таких казусов, мы заключим сторону a в неравенство:
Начинаем перебор: Длина наибольшей стороны равняется а) 9, поэтому может быть [1] вариант (9, 9, 9) б) 10, поэтому вариантов может быть [2] (10, 10, 7), (10, 9, 8) в) 11, поэтому вариантов может быть [4] (11, 11, 5), (11, 10, 6), (11, 9, 7) и (11, 8, 8). г) 12, поэтому вариантов может быть [5] (12, 12, 3), (12, 11, 4), (12, 10, 5), (12, 9, 6), (12, 8, 7). д) 13, поэтому вариантов может быть [7] (13, 13, 1), (13, 12, 2), (13, 11, 3), (13, 10, 4), (13, 9, 5), (13, 8, 6), (13, 7, 7) Итого: 1 + 2 + 4 + 5 + 7 = 19
Пошаговое объяснение:
Для того чтобы построить график функции, нужно сначала по ее формуле определить тип функции и форму её графика.
Как мы видим, в формуле присутствует деление на х, значит это степенная функция с гиперболической формой графика.
Почему степенная? потому что 1/х это то же самое, что и х⁻¹.
Также по формуле мы видим, что график сдвинут по оси у вверх на 2 единицы (+2 в конце).
И, наконец, множитель перед х в знаменателе, больший единицы, говорит о том, что изгиб гиперболы будет более крутым, чем в классической форме графика.
Непостредственно построение графика криволинейной функции выполняется по выборке точек. Причем, для промежутка х∈{-2,2] нужно вычислить несколько значений, желательно, не менее 6. Такая частота в этом промежутке нучна для плавного и более точного построения изгиба, т.к. оставшаяся часть по форме стремится к очень пологой кривой, почти прямой.
Делаем выборку координат- см. рис 1.
Строим график по точкам - см. рис. 2
a + b > c | a + c > b | b + c > a
Чтобы избежать таких казусов, мы заключим сторону a в неравенство:
Начинаем перебор:
Длина наибольшей стороны равняется
а) 9, поэтому может быть [1] вариант (9, 9, 9)
б) 10, поэтому вариантов может быть [2] (10, 10, 7), (10, 9, 8)
в) 11, поэтому вариантов может быть [4] (11, 11, 5), (11, 10, 6), (11, 9, 7) и (11, 8, 8).
г) 12, поэтому вариантов может быть [5] (12, 12, 3), (12, 11, 4), (12, 10, 5), (12, 9, 6), (12, 8, 7).
д) 13, поэтому вариантов может быть [7] (13, 13, 1), (13, 12, 2), (13, 11, 3), (13, 10, 4), (13, 9, 5), (13, 8, 6), (13, 7, 7)
Итого: 1 + 2 + 4 + 5 + 7 = 19
ответ: 19.