Пусть х км/ч - скорость течения реки, тогда (14 + х) км/ч - скорость лодки по течению реки, (14 - х) км/ч - скорость лодки против течения реки. Уравнение:
Мысль 1 - какие бывают масштабы? - на рисунке в приложении карта случайной местности. Три вида:численный, именованный, линейный.
Мысль 2 - как легче вычислять - делить или умножать.
Дано: М = 1:200 - численный масштаб,
N₁ = 7 м - реальный отрезок, N₂ = 5.2 м - реальный радиус.
Найти: L₁=? L₂=? Изобразить в масштабе.
Мысль 3 - вычислим через численный масштаб и умножаем.
1) L₁ = N₁ * M = 7(м)* (1/200) = 7/200 =0,035 (м) = 3,5 см = 35 мм. - длина отрезка - ответ.
Мысль 4 - вычислим через именованный масштаб, переведём в него и будем делить.
В 1 см = 200 см = 2 м или k = 2 м/см - именованный масштаб.
2) L₁ =N₁ : k = 7 (м) : 2 (м/см) = 3,5 см = 35 мм - длина отрезка - ответ - (гораздо проще оказалось).
Аналогично два варианта для задачи б) - радиус N₂ = 5,2 м.
3) L₂ = 5.2 (м) * 1/200 = 0,026 м = 2,6 см = 26 мм - радиус - ответ.
4) L₂ = 5.2 (м) : 2(м/см) = 2,6 см = 26 мм - радиус - ответ.
Мысль 5 - изображаем результаты на рисунке в приложении. Потребуется циркуль.
ДОПОЛНИТЕЛЬНО:
ИНТЕРЕСНА ОБРАТНАЯ ЗАДАЧА - как по карте или плану найти реальные размеры. Для этого можно использовать линейный нониус, который обычно есть на транспортире.
Пусть х км/ч - скорость течения реки, тогда (14 + х) км/ч - скорость лодки по течению реки, (14 - х) км/ч - скорость лодки против течения реки. Уравнение:
48/(14-х) - 48/(14+х) = 1
48 · (14 + х) - 48 · (14 - х) = 1 · (14 + х) · (14 - х)
672 + 48х - 672 + 48х = 14² - х²
96х = 14² - х²
Запишем квадратное уравнение в стандартном виде:
х² + 96х - 196 = 0
D = b² - 4ac = 96² - 4 · 1 · (-196) = 9216 + 784 = 10 000
√D = √10000 = 100
х₁ = (-96-100)/(2·1) = (-196)/2 = -98 (не подходит, так как < 0)
х₂ = (-96+100)/(2·1) = 4/2 = 2
ответ: 2 км/ч - скорость течения реки.
Проверка:
48 : (14 - 2) = 48 : 12 = 4 (ч) - время в пути против течения
48 : (14 + 2) = 48 : 16 = 3 (ч) - время в пути по течению
4 - 3 = 1 (ч) - разница во времени
Решаем силой Разума - сначала думаем.
Мысль 1 - какие бывают масштабы? - на рисунке в приложении карта случайной местности. Три вида:численный, именованный, линейный.
Мысль 2 - как легче вычислять - делить или умножать.
Дано: М = 1:200 - численный масштаб,
N₁ = 7 м - реальный отрезок, N₂ = 5.2 м - реальный радиус.
Найти: L₁=? L₂=? Изобразить в масштабе.
Мысль 3 - вычислим через численный масштаб и умножаем.
1) L₁ = N₁ * M = 7(м)* (1/200) = 7/200 =0,035 (м) = 3,5 см = 35 мм. - длина отрезка - ответ.
Мысль 4 - вычислим через именованный масштаб, переведём в него и будем делить.
В 1 см = 200 см = 2 м или k = 2 м/см - именованный масштаб.
2) L₁ =N₁ : k = 7 (м) : 2 (м/см) = 3,5 см = 35 мм - длина отрезка - ответ - (гораздо проще оказалось).
Аналогично два варианта для задачи б) - радиус N₂ = 5,2 м.
3) L₂ = 5.2 (м) * 1/200 = 0,026 м = 2,6 см = 26 мм - радиус - ответ.
4) L₂ = 5.2 (м) : 2(м/см) = 2,6 см = 26 мм - радиус - ответ.
Мысль 5 - изображаем результаты на рисунке в приложении. Потребуется циркуль.
ДОПОЛНИТЕЛЬНО:
ИНТЕРЕСНА ОБРАТНАЯ ЗАДАЧА - как по карте или плану найти реальные размеры. Для этого можно использовать линейный нониус, который обычно есть на транспортире.