Первое задание. Первая дробь: 18/28 сокращаешь на 2, получается 9/14
Вторую дробь сокращаешь на 3. Получается 21/27
Второе задание. Чтобы сравнить, нужно привести к общему знаменателю (число под чертой). Под цифрой 1 первую дробь приводим к знаменателю 26,для этого умножаем первую дробь)(6/13) на 2, получаем 12/26. Теперь сравниваем 12/26>11/26
Под цифрой 2 по аналогии, к общему знаменателю (40), умножаем первую дробь на 5,вторую дробь на 8. Получаем 15/40 и 16/40, соответственно вторая дробь больше
Третье задание: 1) общий знаменатель 72,дополнительный множитель для первой дроби 9,для второй 8,получаем 59/72
2)общий знаменатель 24,доп множитель для первой дроби 2,для второй 3,получаем 5/24
3)общий знаменатель 40,дополнительные множители 5 и 4 соответственно, ответ 177/40
4)общий знаменатель 60,дополн множ к первой дроби 6,ко второй 5,ответ 177/60
Приведем примерный алгоритм получения необходимых данных.
1.Нахождение области определения функции
Определение интервалов, на которых функция существует.
!!! Очень подробно об области определения функций и примеры нахождения области определения тут.
2.Нули функции
Для вычисления нулей функции, необходимо приравнять заданную функцию к нулю и решить полученное уравнение. На графике это точки пересечения с осью ОХ.
3.Четность, нечетность функции
Функция четная, если y(-x) = y(x). Функция нечетная, если y(-x) = -y(x). Если функция четная – график функции симметричен относительно оси ординат (OY). Если функция нечетная – график функции симметричен относительно начала координат.
4.Промежутки знакопостоянства
Расстановка знаков на каждом из интервалов области определения. Функция положительна на интервале - график расположен выше оси абсцисс. Функция отрицательна - график ниже оси абсцисс.
5. Промежутки возрастания и убывания функции.
Для определения вычисляем первую производную, приравниваем ее к нулю. Полученные нули и точки области определения выносим на числовую прямую. Для каждого интервала определяем знак производной. Производная положительна - график функции возрастает, отрицательна - убывает.
6. Выпуклость, вогнутость.
Вычисляем вторую производную. Находим значения, в которых вторая производная равна нулю или не существует. Вторая производная положительна - график функции выпукл вверх. Отрицательна - график функции выпукл вниз.
7. Наклонные асимптоты.
Пример исследования функции и построения графика №1
Исследовать функцию средствами дифференциального исчисления и построить ее график.
Первое задание. Первая дробь: 18/28 сокращаешь на 2, получается 9/14
Вторую дробь сокращаешь на 3. Получается 21/27
Второе задание. Чтобы сравнить, нужно привести к общему знаменателю (число под чертой). Под цифрой 1 первую дробь приводим к знаменателю 26,для этого умножаем первую дробь)(6/13) на 2, получаем 12/26. Теперь сравниваем 12/26>11/26
Под цифрой 2 по аналогии, к общему знаменателю (40), умножаем первую дробь на 5,вторую дробь на 8. Получаем 15/40 и 16/40, соответственно вторая дробь больше
Третье задание: 1) общий знаменатель 72,дополнительный множитель для первой дроби 9,для второй 8,получаем 59/72
2)общий знаменатель 24,доп множитель для первой дроби 2,для второй 3,получаем 5/24
3)общий знаменатель 40,дополнительные множители 5 и 4 соответственно, ответ 177/40
4)общий знаменатель 60,дополн множ к первой дроби 6,ко второй 5,ответ 177/60
Четвёртое задание (смотри фото)
Пятое и шестое (смотри фото)
Вроде всё, удачи!
Приведем примерный алгоритм получения необходимых данных.
1.Нахождение области определения функции
Определение интервалов, на которых функция существует.
!!! Очень подробно об области определения функций и примеры нахождения области определения тут.
2.Нули функции
Для вычисления нулей функции, необходимо приравнять заданную функцию к нулю и решить полученное уравнение. На графике это точки пересечения с осью ОХ.
3.Четность, нечетность функции
Функция четная, если y(-x) = y(x). Функция нечетная, если y(-x) = -y(x). Если функция четная – график функции симметричен относительно оси ординат (OY). Если функция нечетная – график функции симметричен относительно начала координат.
4.Промежутки знакопостоянства
Расстановка знаков на каждом из интервалов области определения. Функция положительна на интервале - график расположен выше оси абсцисс. Функция отрицательна - график ниже оси абсцисс.
5. Промежутки возрастания и убывания функции.
Для определения вычисляем первую производную, приравниваем ее к нулю. Полученные нули и точки области определения выносим на числовую прямую. Для каждого интервала определяем знак производной. Производная положительна - график функции возрастает, отрицательна - убывает.
6. Выпуклость, вогнутость.
Вычисляем вторую производную. Находим значения, в которых вторая производная равна нулю или не существует. Вторая производная положительна - график функции выпукл вверх. Отрицательна - график функции выпукл вниз.
7. Наклонные асимптоты.
Пример исследования функции и построения графика №1
Исследовать функцию средствами дифференциального исчисления и построить ее график.