В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
mariuaivanova1
mariuaivanova1
05.05.2020 05:19 •  Математика

Lim x-0 (2x-4)*(x-1)(x+2) lim x-2 (5x^3-6x^2+x-5) lim x-5 x-5/x^2-25

Показать ответ
Ответ:
KKotya1k
KKotya1k
26.08.2020 14:02
\displaystyle \lim_{x \to 0} (2x-4)(x-1)(x+2) =(2\cdot 0 -4)(0-1)(0+2)=8\\\\\lim_{x \to 2} (5x^3-6x^2+x-5)=(5\cdot 2^3-6\cdot2^2+2-5)=40-24-3=13

(Т.к. полиномиальные функции непрерывны в \mathbb R)

Для всех x\ne 5, выполняется:

\displaystyle \frac{x-5}{x^2-25}= \frac{x-5}{(x+5)(x-5)}= \frac{1}{x+5}

Следовательно,

\displaystyle \lim_{x \to 5} \frac{x-5}{x^2-25}=\lim_{x \to 5} \frac{1}{x+5}= \frac{1}{5+5}= \frac{1}{10}
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота