В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Adilka11
Adilka11
25.09.2020 12:34 •  Математика

Lim x-> +бесконечность (3-4x)(ln(1-4x)-ln(2-4x)) не используя правило лопиталя

Показать ответ
Ответ:
OPTIMIST777
OPTIMIST777
08.09.2020 14:42
\lim_{x \to+ \infty} (3-4x)(ln(1-4x)-ln(2-4x))= \\ \\ = \lim_{x \to+ \infty} (4x-3)(ln(2-4x)-ln(1-4x))= \\ \\ = \lim_{x \to+ \infty} (4x-3)ln( \frac{2-4x}{1-4x} )= \\ \\ = \lim_{x \to+ \infty} (4x-3)ln( \frac{4x-2}{4x-1} )= \lim_{x \to+ \infty} (4x-3)ln( \frac{4x-1-1}{4x-1} )= \\ \\ = \lim_{x \to+ \infty} (4x-3)ln(1- \frac{1}{4x-1} )= \lim_{x \to+ \infty} -(4x-3)* \frac{1}{4x-1} = \\ \\ = \lim_{x \to+ \infty} - \frac{4x-3}{4x-1} =\{ \frac{ \infty}{ \infty} \}=- \frac{4}{4} =-1
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота