Также разложим числа на простые множители. Сначала запишем разложение на множители самого большого числа, затем меньшее число. Найдем множители, которые не вошли в разложение наибольшего числа.
15 = 3 • 5
6 = 2 • 3
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
t0 - автобус
t0 + Δt - мотоцикл
t0 + 2*Δt - автомобиль
Мимо второго наблюдателя они проходят в моменты времени:
t1 - автобус
t1 + Δt - автомобиль
t1 + 2*Δt - мотоцикл
Пусть S - расстояние между наблюдателями.
v1 - скорость автобуса, v2 - скорость мотоцикла, v3 - скорость автомобиля.
Тогда:
S/v1 = t1 - t0
S/v2 = t1 - t0 + Δt
S/v3 = t1 - t0 - Δt
Складывая два последних уравнения, получим:
S/v2 + S/v3 = 2*(t1 - t0) = 2*S/v1
Отсюда находим:
v1 = 2*v2*v3/(v2+v3) = 2*30*60/90 = 40 км/ч.
Пошаговое объяснение:
1)6 и 15
Наибольший общий делитель:
Разложим числа на простые множители
6 = 2 • 3
15 = 3 • 5
Общие множители чисел: 3
НОД (6; 15) = 3
Наименьшее общее кратное::
Также разложим числа на простые множители. Сначала запишем разложение на множители самого большого числа, затем меньшее число. Найдем множители, которые не вошли в разложение наибольшего числа.
15 = 3 • 5
6 = 2 • 3
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (6; 15) = 3 • 5 • 2 = 30
Наибольший общий делитель НОД (6; 15) = 3
Наименьшее общее кратное НОК (6; 15) = 30
2) 15 и20
Наибольший общий делитель НОД (15;20) = 5
Наименьшее общее кратное НОК (15;20) = 60
3) 24 и 40
Наибольший общий делитель НОД (24; 40) = 8
Наименьшее общее кратное НОК (24; 40) = 120
4)40 и 60
Наибольший общий делитель НОД (40; 60) = 20
Наименьшее общее кратное НОК (40; 60) = 120
5)15 и 40
Наибольший общий делитель НОД (15; 40) = 5
Наименьшее общее кратное НОК (15; 40) = 120
6)28 и 35
Наибольший общий делитель НОД (28; 35) = 7
Наименьшее общее кратное НОК (28; 35) = 140
7)30 и 45
Наибольший общий делитель НОД (30; 45) = 15
Наименьшее общее кратное НОК (30; 45) = 90
8)64 и 96
Наибольший общий делитель НОД (64; 96) = 32
Наименьшее общее кратное НОК (64; 96) = 192