Діагональ основи правильної прямокутної призми дорівнюватиме :
Lосн.=√( 3^2 + 3^2 ) = √18 = 3√2
Діагональ правильної призми утворює з діагоналлю основи і висотою призми прямокутний трикутник. Відповідно, по теоремі Піфагора діагональ заданої правильної чотирикутної призми дорівнюватиме
Пошаговое объяснение:
Дано:
h= 5 см
a=3 см
Sп.п.-?
L-?
Площа бокової поверхні дорівнює:
Sбок.=4a*h = 4*3*5=60 см2
Площа основи дорівнює
S=a^2= 3^2 = 9 cм2
Площа повної поверхні призми дорівнює:
Sп.п=2Sосн.+Sбок. = 2*9+ 60= 78 cм2
Діагональ основи правильної прямокутної призми дорівнюватиме :
Lосн.=√( 3^2 + 3^2 ) = √18 = 3√2
Діагональ правильної призми утворює з діагоналлю основи і висотою призми прямокутний трикутник. Відповідно, по теоремі Піфагора діагональ заданої правильної чотирикутної призми дорівнюватиме
Lп=√( ( 3√2 )^2 + 5^2 ) = 6,55 см
Дано: ΔABC — прямокутний, АВ і АС — катети, АВ=16 см, АС=12 см, коло(R;OC), т.О∈ВС, т.R — точка дотику кола до ΔАВС, т.R∈AB.
Знайти: радіус R кола.
Розв'язання.
1) Знайдемо гіпотенузу ВС ΔАВС за т.Піфагора:
АВ²+АС²=ВС²;
16²+12²=ВС²;
ВС²= 256+144;
ВС²= 400;
ВС= 20 см (–20 не задовольняє умові)
2) Проведемо радіус OR. R=OR=OC. Оскільки т.R — точка дотику, то OR⟂АВ.
3) Оскільки OR⟂AB і AB⟂AC (катети перпендикулярні), то OR||AC і трикутники ΔАВС і ΔRBO подібні за лемою.
(Лема про подібні трикутники: пряма, паралельна стороні трикутника, відтинає від нього трикутник, подібний даному)
4) ΔАВС подібний ΔRBO. Це означає, що відповідні сторони цих трикутників відносяться.
А тому справедливою буде така рівність:
АС/OR=BC/BO.
Нехай OR=OC=R (радіус, який потрібно знайти). Тоді ВО=ВС–ОС=ВС–R=20–R.
AC / R=BC / (BC–R);
12 / R= 20 / (20–R); (по пропорции решаем)
12(20–R)=20R;
240–12R=20R;
240=32R;
R= 240/32;
R= 15/2;
R= 7,5 (см)
Відповідь: 7,5 см.
ответ Б.