1) Реши задачу по действиям. В двух пачках 270 тетрадей. Сколько тетрадей в каждой пачке, если в одной из них тетрадей в 4 раза меньше, чем в другой? Одна пачка (в 4 р. меньше) - 1 часть, вторая в 4 раза большая составляет 4 части. 1) 1 часть+4 части=5 частей. 2) 270÷5=54 (тетради) - в одной части, а значит в первой пачке. 3) 4×54=216 (тетрадей) - во второй пачке.
2) Реши её с уравнения. Пусть в одной из пачек с тетрадей. Тогда во второй 4с тетрадей. Всего 270 тетрадей в двух пачках. Составим и решим уравнение: 4с+с=270 5с=270 с=270÷5 с=54 тетради в первой пачке. 4с=4×54=216 тетрадей во второй пачке. 3) Проверь получившееся у тебя уравнение: с+4с=270. Верно. 4) Решение уравнения даёт полный ответ на вопрос задачи? Нет. Если нет, подумай, как завершить её решение? Необходимо посчитать сколько тетрадей во второй пачке. 4с=4×54=216 тетрадей
. Первый раз надо положить на чашки весов по 27 монет, а 26 оставить на столе. Далее рассматриваем два случая. 1) Одна из чашек перевесит, значит, фальшивая монета на более легкой чашке. Тогда берем эти 27 монет, среди которых одна фальшивая, и кладем на чашки весов по 9 из них, 9 оставляем на столе. Если одна из чашек перевесит, то фальшивая монета на другой, если весы в равновесии, монета среди 9 монет на столе. Берем теперь 9 монет, среди которых одна фальшивая. Кладем на чашки весов по 3 монеты, 3 монеты оставляем на столе. Если одна из чашек перевесит, то фальшивая монета на другой, если весы в равновесии, то фальшивая монета среди 3 монет на столе. Теперь берем 3 монеты, среди которых одна фальшивая, кладем по одной на чашки весов, одну оставляем на столе. Если одна из чашек перевесит, то фальшивая монета на другой, если весы в равновесии, то фальшивая монета на столе! 2) Теперь вернемся назад, к случаю когда весы после первого взвешивания остались в равновесии. Значит, фальшивая монета среди 26 монет на столе, и нам надо за 3 взвешивания найти ее. Ну, раз мы из 27 монет знаем как найти фальшивую за три взвешивания, то уж из 26 найдем, верно? ! Делим 26 монет на три кучки - на чашки весов кладем по 9 монет, восемь оставляем на столе. Если одна из чашек перевесит, то мы уже знаем, как найти фальшивую из 9 за два взвешивания, а если весы в равновесии, то фальшивая среди восьми на столе. Делим эти восемь монет, на чашки весов кладем по три монеты, две оставляем на столе. Если опять одна из чашек перевесит, то мы знаем как найти одну фальшивую монету из 3 за одно взвешивание, а если весы останутся в равновесии, то значит одна из двух на столе - фальшивая. Взвешиваем эти две монеты - и определяем, какая из них легче! Разница с первым случаем в том, что при последнем взвешивании не остается монеты на столе, ну так нам и надо! Главное, чтобы БОЛЬШЕ ОДНОЙ не осталось, а если их нет, так просто нам еще легче! Никакой "статистики" в этой задаче нет. Если мы знаем, легче или тяжелее фальшивая монета, чем все остальные, то при любом количестве монет от 3^(N-1)+1 до 3^N (^ - знак возведения в степень) , фальшивую монету можно найти МАКСИМУМ за N взвешиваний (можно случайно и быстрее, если монет меньше чем 3^N-1 и если при этом ПОВЕЗЕТ, но за N взвешиваний - ОБЯЗАТЕЛЬНО!) . Так, при количестве монет от 2 до 3 - за одно, от 4 до 9 - за два, от 10 до 27 - за три, от 28 до 81 - за четыре, от 82 до 243 - за пять, от 244 до 729 - за шесть и так далее!
В двух пачках 270 тетрадей. Сколько тетрадей в каждой пачке, если в одной из них тетрадей в 4 раза меньше, чем в другой?
Одна пачка (в 4 р. меньше) - 1 часть, вторая в 4 раза большая составляет 4 части.
1) 1 часть+4 части=5 частей.
2) 270÷5=54 (тетради) - в одной части, а значит в первой пачке.
3) 4×54=216 (тетрадей) - во второй пачке.
2) Реши её с уравнения.
Пусть в одной из пачек с тетрадей. Тогда во второй 4с тетрадей. Всего 270 тетрадей в двух пачках.
Составим и решим уравнение:
4с+с=270
5с=270
с=270÷5
с=54 тетради в первой пачке.
4с=4×54=216 тетрадей во второй пачке.
3) Проверь получившееся у тебя уравнение: с+4с=270.
Верно.
4) Решение уравнения даёт полный ответ на вопрос задачи?
Нет.
Если нет, подумай, как завершить её решение?
Необходимо посчитать сколько тетрадей во второй пачке.
4с=4×54=216 тетрадей
1) Одна из чашек перевесит, значит, фальшивая монета на более легкой чашке. Тогда берем эти 27 монет, среди которых одна фальшивая, и кладем на чашки весов по 9 из них, 9 оставляем на столе. Если одна из чашек перевесит, то фальшивая монета на другой, если весы в равновесии, монета среди 9 монет на столе. Берем теперь 9 монет, среди которых одна фальшивая. Кладем на чашки весов по 3 монеты, 3 монеты оставляем на столе. Если одна из чашек перевесит, то фальшивая монета на другой, если весы в равновесии, то фальшивая монета среди 3 монет на столе. Теперь берем 3 монеты, среди которых одна фальшивая, кладем по одной на чашки весов, одну оставляем на столе. Если одна из чашек перевесит, то фальшивая монета на другой, если весы в равновесии, то фальшивая монета на столе!
2) Теперь вернемся назад, к случаю когда весы после первого взвешивания остались в равновесии. Значит, фальшивая монета среди 26 монет на столе, и нам надо за 3 взвешивания найти ее. Ну, раз мы из 27 монет знаем как найти фальшивую за три взвешивания, то уж из 26 найдем, верно? ! Делим 26 монет на три кучки - на чашки весов кладем по 9 монет, восемь оставляем на столе. Если одна из чашек перевесит, то мы уже знаем, как найти фальшивую из 9 за два взвешивания, а если весы в равновесии, то фальшивая среди восьми на столе. Делим эти восемь монет, на чашки весов кладем по три монеты, две оставляем на столе. Если опять одна из чашек перевесит, то мы знаем как найти одну фальшивую монету из 3 за одно взвешивание, а если весы останутся в равновесии, то значит одна из двух на столе - фальшивая. Взвешиваем эти две монеты - и определяем, какая из них легче! Разница с первым случаем в том, что при последнем взвешивании не остается монеты на столе, ну так нам и надо! Главное, чтобы БОЛЬШЕ ОДНОЙ не осталось, а если их нет, так просто нам еще легче!
Никакой "статистики" в этой задаче нет. Если мы знаем, легче или тяжелее фальшивая монета, чем все остальные, то при любом количестве монет от 3^(N-1)+1 до 3^N (^ - знак возведения в степень) , фальшивую монету можно найти МАКСИМУМ за N взвешиваний (можно случайно и быстрее, если монет меньше чем 3^N-1 и если при этом ПОВЕЗЕТ, но за N взвешиваний - ОБЯЗАТЕЛЬНО!) . Так, при количестве монет от 2 до 3 - за одно, от 4 до 9 - за два, от 10 до 27 - за три, от 28 до 81 - за четыре, от 82 до 243 - за пять, от 244 до 729 - за шесть и так далее!