б) Здесь 1 заведомо есть, а 22 должно быть суммой всех чисел набора. Тогда, если 1 не брать, получится сумма 21, а её в списке нет. Значит, такого примера не существует.
в) Число 9 есть, а меньших нет, поэтому 10 и 11 непременно должны быть в наборе. Суммы 19, 20, 21 при этом будут встречаться, а никаких чисел от 12 до 18 включительно в наборе быть не может. Число 22 могло получиться или по причине его наличия в наборе, или как сумма меньших, но тогда это только 11+11. В первом случае получаем набор 9, 10, 11, 22, где сумма равна 52, и он не может содержать других чисел. Это один из вариантов, и он удовлетворяет условию. В случае, когда 11 повторяется, до общей суммы 52 не хватает 11, то есть 11 должно присутствовать трижды. Набор чисел 9, 10, 11, 11, 11 также удовлетворяет условию: все суммы из предыдущего варианта в нём встречаются, а новых, как легко убедиться, нет. Таким образом, условию удовлетворяют ровно два набора, указанные выше.
Общее количество различных наборов при выборе k элементов из n без возвращения и без учёта порядка рассчитывается по формуле:
, где
Рассуждаем: поскольку нас интересуются пятизначные числа, то 0 на первом месте стоять не может, а только одна из цифр 1,2,3,7, т.е. всего 4 варианта.
На втором, третьем, четвертом и пятом местах может стоять одна из пяти возможных цифр 0,1,2,3,7, т.е. нужно посчитать количество таких четырехзначных комбинаций. Т.к. выбираем 4 элемента из 5, то количество таких наборов рассчитываем по формуле:
(наборов)
Вспоминаем, что на первом месте быть размещена одна из 4 цифр, т.е. 4 варианта, тогда всего наборов из 5 цифр будет 4*120 = 480
а) 2, 2, 2, 2
б) Здесь 1 заведомо есть, а 22 должно быть суммой всех чисел набора. Тогда, если 1 не брать, получится сумма 21, а её в списке нет. Значит, такого примера не существует.
в) Число 9 есть, а меньших нет, поэтому 10 и 11 непременно должны быть в наборе. Суммы 19, 20, 21 при этом будут встречаться, а никаких чисел от 12 до 18 включительно в наборе быть не может. Число 22 могло получиться или по причине его наличия в наборе, или как сумма меньших, но тогда это только 11+11. В первом случае получаем набор 9, 10, 11, 22, где сумма равна 52, и он не может содержать других чисел. Это один из вариантов, и он удовлетворяет условию. В случае, когда 11 повторяется, до общей суммы 52 не хватает 11, то есть 11 должно присутствовать трижды. Набор чисел 9, 10, 11, 11, 11 также удовлетворяет условию: все суммы из предыдущего варианта в нём встречаются, а новых, как легко убедиться, нет. Таким образом, условию удовлетворяют ровно два набора, указанные выше.
480
Пошаговое объяснение:
Общее количество различных наборов при выборе k элементов из n без возвращения и без учёта порядка рассчитывается по формуле:
, где
Рассуждаем: поскольку нас интересуются пятизначные числа, то 0 на первом месте стоять не может, а только одна из цифр 1,2,3,7, т.е. всего 4 варианта.
На втором, третьем, четвертом и пятом местах может стоять одна из пяти возможных цифр 0,1,2,3,7, т.е. нужно посчитать количество таких четырехзначных комбинаций. Т.к. выбираем 4 элемента из 5, то количество таких наборов рассчитываем по формуле:
(наборов)
Вспоминаем, что на первом месте быть размещена одна из 4 цифр, т.е. 4 варианта, тогда всего наборов из 5 цифр будет 4*120 = 480