Міста А і Б розташовані на одному шосе. З цих міст одночасно в одному напрямі виїхали два автобуси. Перший автобус рухався зі
швидкістю 54 км/год, що становить 60% швидкості другого автобуса.
Другий автобус наздогнав перший через 1 год 30 хв після виїзду. Яка
відстань між містами А і Б? На якій відстані один від одного були
автобуси через 24 хв після виїзду? Через 2 год. після виїзду?
abc
a + b + c = 8 (1)
a² + b² + c² = 11x x∈N (2)
Возведем обе части (1) в квадрат. Получим:
(a + b + c)² = 64
a² + b² + c² + 2ab + 2bc + 2ac = 64
a² + b² + c² = 64 - 2(ab + bc + ac). Тогда из (2):
64 - 2(ab + bc + ac) = 11x
Так как левая часть четна при любых a, b и с ∈ N, то разделим ее на 2:
32 - (ab + ac + bc) = 11x
Равенство выполняется в двух случаях: при х = 1 и х = 2, однако, сумма квадратов цифр числа, с суммой цифр, равной 8, не может равняться 11. Следовательно х = 2. Сумма квадратов цифр числа - 22 и само число:
332; 323; 233.
ответ: 332.
Или так:
Так как сумма цифр трехзначного числа равна 8, и, по условию, цифры могут повторяться, то максимальное число, удовлетворяющее первому условию, - 800. Однако, второму условию это число не удовлетворяет, так как 64 не кратно 11.
Цифры 0 в составе числа быть не может, так как две оставшиеся цифры должны быть или обе четные, или обе нечетные. Сумма квадратов и в том, и в другом случае четна, что не соответствует условию 2.
Так как 64 - максимально возможная сумма квадратов цифр для данного числа, а цифры 0 в составе числа быть не может, то максимально возможное число уменьшается до 611. Сумма квадратов для этого числа - 38. Следовательно, сумма квадратов для числа, удовлетворяющего второму условию, может быть 33 или 22.
33 не подходит, так как 611 имеет сумму квадратов, равную 38, а 521 - сумму квадратов, равную 30.
Остается число 22. И исходное трехзначное число - 332; 323 или 233 с суммой квадратов цифр, равной 9 + 9 + 4 = 22
ответ: 332.
Для прогрессии есть формула:
an = a1 + (n-1)d
a1 = 3
an = -13
Sn = -25
Самое быстрое решение тут - метод подбора.
От a1 до an у нас должно идти какое-то количество чисел, чтоб их сумма была равна -25.
Попробуем вставить между ними число -5.
-5 - потому что 3 - 8 = -5 и -13 + 8 = -5 то есть среднее между ними
3 - 5 - 13 = -15 получается. Нам это не подходит.
Вставить 2 числа между 3 и -13 не получится, потому что 3 - (-13) = 16 , а 16 на 3 не делится.
Поэтому вставим 3 числа.
16 : 4 = 4
3 - 4 = -1
-1 - 4 = -5
-5 - 4 = -9
Считаем сумму:
3 - 1 - 5 - 9 - 13 = -25
Число членов прогрессии = 5:
a1 = 3
a2 = -1
a3 = -5
a4 = -9
a5 = -13
Если не нравится делать методом подбора - можно сделать по формуле. Там и короче получается, просто методом подбора - понятнее.
S = n(a1 + an)/2
S = -25
n(a1+an)/2 = -25
n(a1+an) = -25 * 2
n(a1+an) = -50
n(3-13) = -50
-10n = -50
n = 5
ответ: Число членов = 5