Нарисуй, и станет очевидно, что площадь PQT будет равна 1/8 площади прямоугольника... 1) PQRS-ромб, заодно показывается равность треугольничков у вершин прямоугольника (как прямоугольные с равными катетами, по половине стороны прямоугольника) 2) а в ромбе такой треугольник равен 4 себе подобным (прямоугольным с равными половине диагонали ромба сторонами) (ромб - параллелограмм⇒диагонали точкой пересечения делятся попалам)также в этом пункте можно отметить, что диагонали ромба равны сторонам прямоугольника 3) и равенство этих групп 3/угольничков, можно провести по любому признаку равенства треугольников (по трем сторонам, или по гипотенузе и катету, или по двум катетам)
1) PQRS-ромб, заодно показывается равность треугольничков у вершин прямоугольника (как прямоугольные с равными катетами, по половине стороны прямоугольника)
2) а в ромбе такой треугольник равен 4 себе подобным (прямоугольным с равными половине диагонали ромба сторонами) (ромб - параллелограмм⇒диагонали точкой пересечения делятся попалам)также в этом пункте можно отметить, что диагонали ромба равны сторонам прямоугольника
3) и равенство этих групп 3/угольничков, можно провести по любому признаку равенства треугольников (по трем сторонам, или по гипотенузе и катету, или по двум катетам)
Даны 4 точки А(2;-1;3), В(n;1;1), С(2;1;0), D(-1;-1;1).
Определяем уравнение плоскости по трём точкам с известными координатами: А(2;-1;3), С(2;1;0), D(-1;-1;1).
Для составления уравнения плоскости используем формулу:
x - xA y - yA z - zA
xC - xA yC - yA zC - zA
xD - xA yD - yA zD - zA = 0
Подставим данные и упростим выражение:
x - 2 y - (-1) z - 3
2 - 2 1 - (-1) 0 - 3
(-1) - 2 (-1) - (-1) 1 - 3 = 0.
x - 2 y - (-1) z - 3
0 2 -3
-3 0 -2 = 0.
(x - 2) (2·(-2)-(-3)·0) - (y - (-1))(0·(-2)-(-3)·(-3)) + (z - 3) (0·0-2·(-3)) = 0.
(-4) (x - 2) + 9 (y - (-1)) + 6 (z - 3) = 0.
- 4x + 9y + 6z - 1 = 0.
Подставим в полученное уравнение координаты точки В.
-4n + 9*1 + 6*1 - 1 = 0,
-4n = -14,
ответ: n = -14/(-4) = 7/2 = 3,5.