сначала мы дорисовываем так что бы получился прямоугольник первая чать. Как только мы дорисовали мы найдем площадь прямоугольника
S=2"3=6см в квадрате потом делим на 2 получится 3 см в квадрате,
потом просто находим S прямоугольник.
третья часть поступаем как с первой дорисовываем часть до прямоугольника находим S потом делим на два получилось 12см квадрате. Потом дели на два получилось 6см квадрате
Пошаговое объяснение:чтобы исследовать знакочередующийся ряд на сходимость, надо применить признак Лейбница: если члены знакопеременного ряда убывают по модулю, то ряд сходится. (т.е. два условия, 1) ряд знакочеред-ся; 2) члены ряда монотонно убывают по модулю). Проверим эти условия: 1) Е (-1)ⁿ(3n-2/4n-3)²ⁿ = -1+4⁴/5⁴ - 7⁶/9⁶+ 10⁸/13⁸ -... = -1 + (4/5)⁴- (7/9)⁶ +(10/13)⁸ - (13/17)¹⁰+... ⇒ каждый следующий член ряда по модулю меньше предыдущего, Неравенство |aₙ| < |aₙ₊₁| здесь обосновать трудно, распишем несколько конкретных членов и всю цепочку: 1> (4/5)⁴ >(7/9)⁶> (10/13)⁸> (13/17)¹⁰>...> (3n-2/4n-3)²ⁿ т.е. модуль общего члена ряда стремится к нулю: = (3n-2/4n-3)²ⁿ = (n(3 - 2/n / n(4 - 3/n) )²ⁿ = (3/4) ^∞ = 0. Значит ряд сходится.
ответ:ответ=15см квадрат.
Пошаговое объяснение:
сначала мы дорисовываем так что бы получился прямоугольник первая чать. Как только мы дорисовали мы найдем площадь прямоугольника
S=2"3=6см в квадрате потом делим на 2 получится 3 см в квадрате,
потом просто находим S прямоугольник.
третья часть поступаем как с первой дорисовываем часть до прямоугольника находим S потом делим на два получилось 12см квадрате. Потом дели на два получилось 6см квадрате
найдем S фигуры:
3+6+6=15 см квадрате.
ответ: S= 15 см в квадрате
ответ: ряд сходится
Пошаговое объяснение:чтобы исследовать знакочередующийся ряд на сходимость, надо применить признак Лейбница: если члены знакопеременного ряда убывают по модулю, то ряд сходится. (т.е. два условия, 1) ряд знакочеред-ся; 2) члены ряда монотонно убывают по модулю). Проверим эти условия: 1) Е (-1)ⁿ(3n-2/4n-3)²ⁿ = -1+4⁴/5⁴ - 7⁶/9⁶+ 10⁸/13⁸ -... = -1 + (4/5)⁴- (7/9)⁶ +(10/13)⁸ - (13/17)¹⁰+... ⇒ каждый следующий член ряда по модулю меньше предыдущего, Неравенство |aₙ| < |aₙ₊₁| здесь обосновать трудно, распишем несколько конкретных членов и всю цепочку: 1> (4/5)⁴ >(7/9)⁶> (10/13)⁸> (13/17)¹⁰>...> (3n-2/4n-3)²ⁿ т.е. модуль общего члена ряда стремится к нулю: = (3n-2/4n-3)²ⁿ = (n(3 - 2/n / n(4 - 3/n) )²ⁿ = (3/4) ^∞ = 0. Значит ряд сходится.