Мы воспользуемся следующими свойствами непрерывных функций:
(1) сумма и разность непрерывных функций — непрерывные функции;
(2) если g(x) — непрерывная функция, функция g(ax) также непрерывна.
Теперь заметим, что по условию непрерывны функции f(x) + f(2x) и f(x) + f(4x), а в силу свойства (2) вместе с функцией f(x) + f(2x) непрерывна и функция f(2x) + f(4x).
Далее, по свойству (1) непрерывна функция (f(x) + f(2x)) + (f(x) + f(4x)) – (f(2x) + f(4x)) = 2f(x), а, значит, и функция f(x).
1.
а)4 866, 7 160, 12 382
б)3 035, 305 055.
в)7 160.
2.
а)6 795, 4 872, 2 106, 55 065.
б)6 795, 2 106, 55 065.
в)6 795,55 065.
г)2 106.
д)6 795.
е)4 872,2 106.
3.
2×2×2×97=776
4.
а)
266 = 2 * 7 * 19
285 = 3 * 5 * 19
НОД (266 и 285) = 19 - наибольший общий делитель
Числа 266 и 285 не являются взаимно простыми, так как у них есть общий делитель.
б)
301 = 7 * 43
585 = 3 * 3 * 5 * 13
Числа 301 и 585 взаимно простые, так как у них нет общих делителей, кроме единицы.
5)
15 918:(577*29-16 354)+978=1020
1)577*29=16 733
2)16 733-16 354=379
3)15 918:379=42
4)42+978=1020
1020 = 2*2*3*5*17
2f(x), а, значит, и функция f(x).
Пошаговое объяснение:
Мы воспользуемся следующими свойствами непрерывных функций:
(1) сумма и разность непрерывных функций — непрерывные функции;
(2) если g(x) — непрерывная функция, функция g(ax) также непрерывна.
Теперь заметим, что по условию непрерывны функции f(x) + f(2x) и f(x) + f(4x), а в силу свойства (2) вместе с функцией f(x) + f(2x) непрерывна и функция f(2x) + f(4x).
Далее, по свойству (1) непрерывна функция (f(x) + f(2x)) + (f(x) + f(4x)) – (f(2x) + f(4x)) = 2f(x), а, значит, и функция f(x).