Предложу решение, но мне кажется, есть что-то попроще, но не могу найти.
Рассуждаем так. Допустим до встречи 1 шёл со скоростью х км/ч, тогда второй шёл со скоростью (10-х) км/ч ( потому что км за 5 часов, значит их общая скорость была 10 км/ч)
За 5 часов х км, ему осталось идти (50-5х) км, тогда второму осталось идти 50 -(50-5х) = 5х (км) (т.к. после встречи им всё равно в сумме надо 50 км пройти.
их новые скорости: у первого:( х-1) (км/ч), у второго 1+(10-х) = 11-х (км/ч)
Теперь делим оставшиеся расстояния на скорости , получим время и зная, что первый пришёл раньше на 2 ч. составляем уравнение:
5х/(11-х) - (50-5х)/(х-1) = 2
5х/(11-х) - (50-5х)/ (х-1) - 2 = 0
приводим к общему знаменателю это (11-х)(х-1), и я буду писать только числитель:
5х(х-1) -(50-5х)(11-х) - 2(11-х)(х-1) = 0 ( т.к. дробь равно 0, если числитель равен 0, а знаменатель не равен 0)
5х^2-5x-550+55x+50x-5x^2-22x+22+2x^2-2x = 0
2x^2+76x-528 = 0
x^2+38x -264 = 0
D=2500
x=(-38-50)/2 -видно, что отриц. число, нам не подходит
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
Предложу решение, но мне кажется, есть что-то попроще, но не могу найти.
Рассуждаем так. Допустим до встречи 1 шёл со скоростью х км/ч, тогда второй шёл со скоростью (10-х) км/ч ( потому что км за 5 часов, значит их общая скорость была 10 км/ч)
За 5 часов х км, ему осталось идти (50-5х) км, тогда второму осталось идти 50 -(50-5х) = 5х (км) (т.к. после встречи им всё равно в сумме надо 50 км пройти.
их новые скорости: у первого:( х-1) (км/ч), у второго 1+(10-х) = 11-х (км/ч)
Теперь делим оставшиеся расстояния на скорости , получим время и зная, что первый пришёл раньше на 2 ч. составляем уравнение:
5х/(11-х) - (50-5х)/(х-1) = 2
5х/(11-х) - (50-5х)/ (х-1) - 2 = 0
приводим к общему знаменателю это (11-х)(х-1), и я буду писать только числитель:
5х(х-1) -(50-5х)(11-х) - 2(11-х)(х-1) = 0 ( т.к. дробь равно 0, если числитель равен 0, а знаменатель не равен 0)
5х^2-5x-550+55x+50x-5x^2-22x+22+2x^2-2x = 0
2x^2+76x-528 = 0
x^2+38x -264 = 0
D=2500
x=(-38-50)/2 -видно, что отриц. число, нам не подходит
или х= (-38+50)/2 = 6 (км/ч)
ответ: 6 км/ч
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
Пошаговое объяснение:
Вот там написал