Предположим, что найдется такое простое число. Тогда все числа после него - составные, и количество всех простых чисел ограничено, мы можем их все записать.
Пусть у нас есть это конечное множество простых чисел. Тогда посмотрим на число A, которое на 1 больше их наибольшего общего кратного.
Тогда если А простое, то мы нашли простое число, которое не входит в наше множество простых чисел. Мы доказали, что такое множество бесконечно
Если А все же не простое, то есть хотя бы одно число, на которое делится А. Тогда это число никак не может быть в нашем множестве, так как все числа данного множества являются делителями их наибольшего общего кратного, а А на 1 больше. Тогда мы снова нашли новое простое число. Значит множество простых чисел бесконечно!
А поскольку любое простое число является натуральным, то для любого "самого большого" простого натурального числа найдется число большее. Значит такого числа не существует!
Дано: Решение:
S = 9 км Так как велосипедисты двигаются навстречу
v₁ = 400 м/мин = 24 км/ч друг другу, то скорость сближения:
t = 10 мин = 1/6 ч v = v₁ + v₂
Время до встречи велосипедистов:
Найти: v₂ - ? t = S/v = S/(v₁+v₂)
Тогда: v₂ = S/t - v₁ = 9 : 1/6 - 24 = 54 - 24 = 30 (км/ч)
ответ: скорость второго велосипедиста 30 км/чю
Такого числа нет!
Пошаговое объяснение:
Предположим, что найдется такое простое число. Тогда все числа после него - составные, и количество всех простых чисел ограничено, мы можем их все записать.
Пусть у нас есть это конечное множество простых чисел. Тогда посмотрим на число A, которое на 1 больше их наибольшего общего кратного.
Тогда если А простое, то мы нашли простое число, которое не входит в наше множество простых чисел. Мы доказали, что такое множество бесконечно
Если А все же не простое, то есть хотя бы одно число, на которое делится А. Тогда это число никак не может быть в нашем множестве, так как все числа данного множества являются делителями их наибольшего общего кратного, а А на 1 больше. Тогда мы снова нашли новое простое число. Значит множество простых чисел бесконечно!
А поскольку любое простое число является натуральным, то для любого "самого большого" простого натурального числа найдется число большее. Значит такого числа не существует!