Массасы 0,099 қарағайдың дәнінен 25 жыл ішінде тал өсіп шығады. Егер қарағай дәнінің массасы тал массасының 0,0000011-ін құраса, онда талдың массасы қандай Көмектесіңізші өтінем
1. Прямая пропорциональность — это зависимость двух величин, при которой одна величина зависит от второй величины так, что их отношение остаётся неизменным
2. Обратной пропорциональной зависимостью называется такая зависимость величин, в которой с увеличением (уменьшением) одной величины в несколько раз, увеличивается(уменьшается) вторая величина во столько же раз.
3. Чтобы найти неизвестный крайний член пропорции, нужно произведение средних членов пропорции разделить на известный крайний член.
4. Средний член пропорции равен произведению крайних членов, делённому на другой средний член пропорции.
5. Пропорция верна, если произведение крайних членов равно произведению средних членов пропорции
Рассмотрим вариант, когда наименьшее число из десяти подряд больше 2. В данном ряду ровно 5 нечетных чисел, причем эти 5 последовательных нечетных чисел имеют вид:
2k + 1; 2(k+1) + 1; 2(k+2) + 1; 2(k+3) + 1; 2(k+4) + 1, где k - натуральное число.
Cреди чисел: k; k+1; k+2; k + 3; k + 4 обязательно найдется хотя бы одно такое число a1, дающее при делении на 3 остаток 1, тогда 2a1+1 будет кратно 3.
Таким образом, в таком ряду не более 4 простых чисел.
Привести пример ряда с 4 простыми числами не сложно: 3,4,5,6,7,8,9,10,11,12 - 4 простых числа.
Для 2 чисел тоже несложно:
20,21,22,23,24,25,26,27,28,29 (23,29)
Для 3 чисел тоже легко:
23,24,25,26,27,28,29,30,31 (23,29,31)
Может ли среди 10 подряд не быть простых чисел вообще?
Легко!
Возьмем любое число, которое одновременно кратно на 2,3,4,5,6,7,8,9,10,11 (например, k = 8*5*9*7*11 )
Но тогда числа:
k+2; k+3; k+4; k+5; k+6; k + 7; k + 8; k + 9; k + 10; k + 11 - cоставные, ибо кратны на прибавляемое к k число, при этом все эти числа больше 11.
Если продолжать смещать эти 10 чисел по одной единице вправо, то рано или поздно встретим первое простое число, ибо простых чисел бесконечно много, то есть мы рано или поздно нарвемся на 10 последовательных чисел с ровно одним простым числом.
1. Прямая пропорциональность — это зависимость двух величин, при которой одна величина зависит от второй величины так, что их отношение остаётся неизменным
2. Обратной пропорциональной зависимостью называется такая зависимость величин, в которой с увеличением (уменьшением) одной величины в несколько раз, увеличивается(уменьшается) вторая величина во столько же раз.
3. Чтобы найти неизвестный крайний член пропорции, нужно произведение средних членов пропорции разделить на известный крайний член.
4. Средний член пропорции равен произведению крайних членов, делённому на другой средний член пропорции.
5. Пропорция верна, если произведение крайних членов равно произведению средних членов пропорции
Пошаговое объяснение:
0,1,2,3,4,5
Пошаговое объяснение:
Рассмотрим вариант, когда наименьшее число из десяти подряд больше 2. В данном ряду ровно 5 нечетных чисел, причем эти 5 последовательных нечетных чисел имеют вид:
2k + 1; 2(k+1) + 1; 2(k+2) + 1; 2(k+3) + 1; 2(k+4) + 1, где k - натуральное число.
Cреди чисел: k; k+1; k+2; k + 3; k + 4 обязательно найдется хотя бы одно такое число a1, дающее при делении на 3 остаток 1, тогда 2a1+1 будет кратно 3.
Таким образом, в таком ряду не более 4 простых чисел.
Привести пример ряда с 4 простыми числами не сложно: 3,4,5,6,7,8,9,10,11,12 - 4 простых числа.
Для 2 чисел тоже несложно:
20,21,22,23,24,25,26,27,28,29 (23,29)
Для 3 чисел тоже легко:
23,24,25,26,27,28,29,30,31 (23,29,31)
Может ли среди 10 подряд не быть простых чисел вообще?
Легко!
Возьмем любое число, которое одновременно кратно на 2,3,4,5,6,7,8,9,10,11 (например, k = 8*5*9*7*11 )
Но тогда числа:
k+2; k+3; k+4; k+5; k+6; k + 7; k + 8; k + 9; k + 10; k + 11 - cоставные, ибо кратны на прибавляемое к k число, при этом все эти числа больше 11.
Если продолжать смещать эти 10 чисел по одной единице вправо, то рано или поздно встретим первое простое число, ибо простых чисел бесконечно много, то есть мы рано или поздно нарвемся на 10 последовательных чисел с ровно одним простым числом.
Рассмотрим варианты с начальным числом менее 3:
1,2,3,4,5,6,7,8,9,10 (4 простых)
2,3,4,5,6,7,8,9,10,11 (5 простых)
То есть возможно от 0 до 5 простых чисел.