1-й : 1) Пусть х - масса банки. Пусть у - масса воды в полной банке Тогда у/5 - масса воды в банке, заполненной на 1/5 часть. 4у/5 - масса масса воды в банке, заполненной на 4/5 части.
Получаем систему уравнений: { х + у/5 = 560 { х + 4у/5 = 740
Вычтем из второго уравнения первое: х + 4у/5 - (х + у/5) = 740 - 560 х + 4у/5 - х - у/5 = 180 3у/5 = 180 у = 5•180/3 у = 300 г - масса воды в полной банке
2) 300 • 1/5 = 300/5 = 60 г - масса воды в 1/5 части банки.
3) 560 - 60 = 500 г - масса банки
ответ: (Д) 500 г.
2-й . 1) 740 - 560 = 180 г - настолько граммов воды в банке, наполненной на 4/5 части больше, чем в банке, наполненной на 1.5 часть. Из- за того, что мы находим разницу, масса банки с 1/5 частью воды вычитается из массы банки с 4/5 частями воды. 2) 4/5 - 1/5 = 3/5 - часть воды в банке которая и равна по массе 180 г. 3) 3/5 : 1/5 = 3 раза - во столько раз 1/5 часть воды по массе легче, чем 3/5 части. 4) 180 : 3 = 60 г - масса 1/5 части воды. 5) 560 - 60 = 500 г - масса пустой банки.
Для определённости пронумеруем виды трёхслойного куба (далее куб) по порядку по строкам. Так, например, третий – это полностью симметричный.
Далее, для описания манипуляций с видами будем использовать термины:
RT (правый единичный поворот на 90 градусов по часовой стрелке) , LT (левый единичный поворот на 90 градусов против часовой стрелки) , UT (разворот на 180 градусов)
Наша начальная цель: собрать из пяти видов верхнюю часть куба, т.е. его грани, стоящие над столом. Будем считать, что мы смотрим на стол с кубом сверху. Верхнюю часть куба, состоящую из пяти видов, будем собирать в виде крестовой раскладки.
В центре креста раскладки будет верхняя грань, которая смотрит на нас, когда мы смотрим вниз на стол с кубом. Дальняя от нас (сверху экрана, если смотреть на ноутбук) часть креста раскладки: это задняя сторона куба. Ближняя к нам (снизу экрана, если смотреть на ноутбук) часть креста раскладки: это передняя сторона куба. Левая часть креста раскладки – это левая сторона куба и правая часть раскладки – соответственно правая сторона.
Важно понимать, что на стыках видов (на рёбрах) при составлении раскладки должны совпадать цветные квадратики на краях видов: чёрный к чёрному и белый к белому, поскольку рёбра куба одновременно являются и рёбрами маленьких кубиков, каждый из которых обладает однотонным окрасом со всех сторон.
Перебор возможных вариантов удобно делать на черновике с карандашом и бумагой, либо с ручкой, но тогда нужно зачёркивать неудачные варианты.
Перебор должен быть системным, иначе мы пропустим тот или иной вариант, и можем пропустить и нужный нам вариант. В качестве системы можно предложить, например, такой график просмотра вариантов.
1. Выбираем вид для верхней грани куба, т.е. для центра креста раскладки (сначала первый, потом второй и т.д.)
2. Когда выбран какой-то вид для верхней (центральной) грани, пытаемся подмонтировать в качестве задней грани к нему другие виды. Опять же по порядку видов.
3. Когда выбран какой-то вид для верхней (центральной) и задней граней, пытаемся подмонтировать в качестве правой грани к нему другие виды. Опять же по порядку видов.
4. Когда выбран какой-то вид для верхней (центральной), задней и правой граней, пытаемся подмонтировать в качестве передней грани к нему другие виды. Опять же по порядку видов.
5. Когда выбран какой-то вид для верхней (центральной), задней, правой и передней граней, пытаемся подмонтировать в качестве левой грани к нему оставшийся вид.
При этом нужно следить, чтобы совпадали рёбра не только верхней (центральной) грани с боковыми, но и рёбра между боковыми гранями.
Перед перебором нужно отметить, что грани 3-его и 5-ого видов – несовместимы. Как их не крути, их рёбра никогда не совместятся. Значит, ни один из этих видов не может служить верхней гранью куба, поскольку иначе он бы взаимодействовал по ребру с несовместным видом. Кроме того, эти несовместные виды не могут быть рядом и на соседних боковых гранях. Таким образом, мы понимаем, что при переборе 3-ий и 5-ый виды можно размещать только на противоположных гранях.
Последовательный перебор из, примерно десятка неудачных – приводит к единственному хорошему варианту:
В центре креста раскладки: 2-ой вид. Слева: 3-ий вид. Справа: 5ый вид RT. Сзади: 1-ый вид. Впереди: 4-ый вид UT.
Эта раскладка показана на первом рисунке. Обратите внимание, что по раскраске совмещены не только рёбра на стыке видов центральных и боковых граней, но и рёбра на стыке соседних боковых граней.
Теперь очень аккуратно в строгом соответствии с буквами-метками (они должны совместиться) переворачиваем раскладку, так чтобы получилась нижняя грань. Это показано на втором рисунке и там уже проявляется по совмещениям на рёбрах вид нижней грани.
Если взглянуть на предлагаемые варианты, то мы можем легко убедиться, что подходит и вариант (А) и вариант (Д) при повороте их на LT.
Выбрать нужный вариант – можно только сосчитав количество белых (их должно быть 12) и чёрных кубиков (их должно быть 15).
Смотрим на первую раскладку. На верхней грани – 3 белых. В среднем видимом слое, в том, что зажат между верхней и нижней гранью (состоящем из 8 кубиков) – 4 белых. В нижней грани (что можно увидеть на второй картинке) – как минимум 3 кубика.
Всего в видимой и известной части кубика мы насчитали 10 белых кубиков. А должно их быть 12. Значит, один белый кубик находится в центре куба (он невидим) и ещё один белый кубик мы можем разместить в положение, отмеченное на втором рисунке знаком вопроса.
1) Пусть х - масса банки.
Пусть у - масса воды в полной банке
Тогда у/5 - масса воды в банке, заполненной на 1/5 часть.
4у/5 - масса масса воды в банке, заполненной на 4/5 части.
Получаем систему уравнений:
{ х + у/5 = 560
{ х + 4у/5 = 740
Вычтем из второго уравнения первое:
х + 4у/5 - (х + у/5) = 740 - 560
х + 4у/5 - х - у/5 = 180
3у/5 = 180
у = 5•180/3
у = 300 г - масса воды в полной банке
2) 300 • 1/5 = 300/5 = 60 г - масса воды в 1/5 части банки.
3) 560 - 60 = 500 г - масса банки
ответ: (Д) 500 г.
2-й .
1) 740 - 560 = 180 г - настолько граммов воды в банке, наполненной на 4/5 части больше, чем в банке, наполненной на 1.5 часть. Из- за того, что мы находим разницу, масса банки с 1/5 частью воды вычитается из массы банки с 4/5 частями воды.
2) 4/5 - 1/5 = 3/5 - часть воды в банке которая и равна по массе 180 г.
3) 3/5 : 1/5 = 3 раза - во столько раз 1/5 часть воды по массе легче, чем 3/5 части.
4) 180 : 3 = 60 г - масса 1/5 части воды.
5) 560 - 60 = 500 г - масса пустой банки.
Далее, для описания манипуляций с видами будем использовать термины:
RT (правый единичный поворот на 90 градусов по часовой стрелке) ,
LT (левый единичный поворот на 90 градусов против часовой стрелки) ,
UT (разворот на 180 градусов)
Наша начальная цель: собрать из пяти видов верхнюю часть куба, т.е. его грани, стоящие над столом. Будем считать, что мы смотрим на стол с кубом сверху. Верхнюю часть куба, состоящую из пяти видов, будем собирать в виде крестовой раскладки.
В центре креста раскладки будет верхняя грань, которая смотрит на нас, когда мы смотрим вниз на стол с кубом. Дальняя от нас (сверху экрана, если смотреть на ноутбук) часть креста раскладки: это задняя сторона куба. Ближняя к нам (снизу экрана, если смотреть на ноутбук) часть креста раскладки: это передняя сторона куба. Левая часть креста раскладки – это левая сторона куба и правая часть раскладки – соответственно правая сторона.
Важно понимать, что на стыках видов (на рёбрах) при составлении раскладки должны совпадать цветные квадратики на краях видов: чёрный к чёрному и белый к белому, поскольку рёбра куба одновременно являются и рёбрами маленьких кубиков, каждый из которых обладает однотонным окрасом со всех сторон.
Перебор возможных вариантов удобно делать на черновике с карандашом и бумагой, либо с ручкой, но тогда нужно зачёркивать неудачные варианты.
Перебор должен быть системным, иначе мы пропустим тот или иной вариант, и можем пропустить и нужный нам вариант. В качестве системы можно предложить, например, такой график просмотра вариантов.
1. Выбираем вид для верхней грани куба, т.е. для центра креста раскладки (сначала первый, потом второй и т.д.)
2. Когда выбран какой-то вид для верхней (центральной) грани, пытаемся подмонтировать в качестве задней грани к нему другие виды. Опять же по порядку видов.
3. Когда выбран какой-то вид для верхней (центральной) и задней граней, пытаемся подмонтировать в качестве правой грани к нему другие виды. Опять же по порядку видов.
4. Когда выбран какой-то вид для верхней (центральной), задней и правой граней, пытаемся подмонтировать в качестве передней грани к нему другие виды. Опять же по порядку видов.
5. Когда выбран какой-то вид для верхней (центральной), задней, правой и передней граней, пытаемся подмонтировать в качестве левой грани к нему оставшийся вид.
При этом нужно следить, чтобы совпадали рёбра не только верхней (центральной) грани с боковыми, но и рёбра между боковыми гранями.
Перед перебором нужно отметить, что грани 3-его и 5-ого видов – несовместимы. Как их не крути, их рёбра никогда не совместятся. Значит, ни один из этих видов не может служить верхней гранью куба, поскольку иначе он бы взаимодействовал по ребру с несовместным видом. Кроме того, эти несовместные виды не могут быть рядом и на соседних боковых гранях. Таким образом, мы понимаем, что при переборе 3-ий и 5-ый виды можно размещать только на противоположных гранях.
Последовательный перебор из, примерно десятка неудачных – приводит к единственному хорошему варианту:
В центре креста раскладки: 2-ой вид.
Слева: 3-ий вид.
Справа: 5ый вид RT.
Сзади: 1-ый вид.
Впереди: 4-ый вид UT.
Эта раскладка показана на первом рисунке. Обратите внимание, что по раскраске совмещены не только рёбра на стыке видов центральных и боковых граней, но и рёбра на стыке соседних боковых граней.
Теперь очень аккуратно в строгом соответствии с буквами-метками (они должны совместиться) переворачиваем раскладку, так чтобы получилась нижняя грань. Это показано на втором рисунке и там уже проявляется по совмещениям на рёбрах вид нижней грани.
Если взглянуть на предлагаемые варианты, то мы можем легко убедиться, что подходит и вариант (А) и вариант (Д) при повороте их на LT.
Выбрать нужный вариант – можно только сосчитав количество белых (их должно быть 12) и чёрных кубиков (их должно быть 15).
Смотрим на первую раскладку. На верхней грани – 3 белых. В среднем видимом слое, в том, что зажат между верхней и нижней гранью (состоящем из 8 кубиков) – 4 белых. В нижней грани (что можно увидеть на второй картинке) – как минимум 3 кубика.
Всего в видимой и известной части кубика мы насчитали 10 белых кубиков. А должно их быть 12. Значит, один белый кубик находится в центре куба (он невидим) и ещё один белый кубик мы можем разместить в положение, отмеченное на втором рисунке знаком вопроса.
А значит, окончательно, нам подходит вариант (Д)
О т в е т : (Д) .