Верные утверждения: 1) В любой треугольник можно вписать окружность.
5) Любые два равносторонних треугольника подобны. По первому признаку подобия треугольников - любые равносторонние треугольники будут подобны, т.к. 2 угла одного треугольника равны 2-ум углам другого (по 60°)
НЕ ВЕРНЫЕ УТВЕРЖДЕНИЯ: 2) Любые два прямоугольных треугольника подобны. НЕТ, необходимо, чтобы 2 угла были равны, по первому признаку подобия треугольников.
3) Центр описанной около треугольника окружности лежит в точке пересечения биссектрис углов треугольника. НЕт, центр - это точка пересечения серединных перпендикуляров к сторонам треугольника
4) Площадь трапеции равна сумме оснований, умноженной на высоту. НЕТ, площадь трапеции - это ПОЛУСУММА оснований умноженная на высоту.
1) В любой треугольник можно вписать окружность.
5) Любые два равносторонних треугольника подобны.
По первому признаку подобия треугольников - любые равносторонние треугольники будут подобны, т.к. 2 угла одного треугольника равны 2-ум углам другого (по 60°)
НЕ ВЕРНЫЕ УТВЕРЖДЕНИЯ:
2) Любые два прямоугольных треугольника подобны.
НЕТ, необходимо, чтобы 2 угла были равны, по первому признаку подобия треугольников.
3) Центр описанной около треугольника окружности лежит в точке пересечения биссектрис углов треугольника.
НЕт, центр - это точка пересечения серединных перпендикуляров к сторонам треугольника
4) Площадь трапеции равна сумме оснований, умноженной на высоту.
НЕТ, площадь трапеции - это ПОЛУСУММА оснований умноженная на высоту.
В решении.
Пошаговое объяснение:
Площадь сада имеющего форму прямоугольника с размерами 40 м Х 60 м увеличили как показано на рисунке.
а) Запишите выражение, которое показывает как площадь увеличенной части зависит от х.
S = (60 + х) * (40 + х).
b) Найдите х, если начальная площадь увеличится в 2 раза.
(60 + х) * (40 + х) = 2(60 * 40)
2400 + 60х + 40х + х² = 4800
х² + 100х - 2400 = 0, квадратное уравнение, ищем корни:
D=b²-4ac =10000 + 9600 = 19600 √D=140
х₁=(-b-√D)/2a
х₁=(-100-140)/2 = -240/2 = -120, отбросить, как отрицательный.
х₂=(-b+√D)/2a
х₂=(-100+140)/2
х₂=40/2
х₂=20.
Проверка:
80 * 60 = 4800 (м²), верно.
с) Как изменится периметр при увеличении площади в 2 раза? Выразите в процентах.
Р до увеличения = 2(60 + 40) = 200 (м).
Р после увеличения = 2(80 + 60) = 280 (м).
(280 - 200) : 200 * 100% = 40 (%).