Математика 27.04.20г
1. Выполните сложение и вычитание.
72 304 + 9 658 = 30 745 – 21 839 =
2. Выполните умножение и деление.
3 458 * 6 = 906 * 58 = 6 132 : 14 =
59 472 : 236 =
3. В магазин привезли 126 пакетов картофеля по 3 кг и столько же кг моркови в сетках по 2 кг. Сколько было сеток с морковью?
4. Длина1м , ширина прямоугольника 9дм5см. Вычислите его периметр и площадь.
5. *Скорый поезд км за 12 ч. Вычислите скорость поезда.
6. Выполните сложение и вычитание.
82 139+ 7 951= 40 253 – 31 349 =
7. Выполните умножение и деление.
2 613 × 8 = 702 × 49 = 5 505 : 15 =
42 000 : 175 =
8. Имеется 168 трёхлитровых банок с томатным соком и столько же литров морковного сока в двухлитровых банках. Сколько имеется банок с морковным соком?
9. Длина прямоугольника 10 см, ширина в 2 раза короче. Вычислите периметр и площадь данного прямоугольника
10. * Самолёт летел 2 580 км за 3 ч. Вычислите скорость самолета
P = 46
S = 120
Пошаговое объяснение:
1) Рассмотрим треугольник ABC:
угол В = 90° => ABC – прямоугольный треугольник
По теореме Пифагора имеем:
AB² + BC² = AC² = 17² = 289
2) Пусть BC = x и AB = y. Составим систему уравнений:
Выразим x через y в первом уравнении:
x = 7 + y
Подставим полученное значение x во второе уравнение:
(7 + y)² + y² = 289
49 + 14y + 2y² = 289
2y² + 14y - 240 = 0 |:2
y² + 7y - 120 = 0
D = 49 + 480 = 529 =>
Так как x и y – длина и ширина, значение y2 = -15 является невозможным.
Найдём x, подставив значение y в первое уравнение системы:
x - 8 = 7 => x = 15
АВ = 8, ВС = 15
3) P = 15×2 + 8×2 = 46
S = 15×8 = 120
a= 3
b= -4
Пошаговое объяснение:
Если при некоторых a и b:
F(x)= ax^4+bx^3+1 нацело делится на (x-1)^2, то и делится на x-1.
Откуда по теореме Безу: F(1) = a+b+1 = 0 → b = -(a+1)
Далее может быть решения:
Первый
ax^4+bx^3+1 = ax^4-(a+1) * x^3+1 = ax^4-(a+1) * x^3 +(a+1) - a =
= a(x^4-1) - (a+1)(x^3-1) = a(x-1)(x+1)(x^2+1)-(a+1)(x-1)(1+x+x^2) =
= (x-1)( a(x+1)(x^2+1) - (a+1)(1+x+x^2) )
Поскольку (x-1)( a(x+1)(x^2+1) - (a+1)(1+x+x^2) ) нацело делится на (x-1)^2, то
G(x) = a(x+1)(x^2+1) - (a+1)(1+x+x^2) делится на x-1 ,таким образом, по теореме Безу снова имеем:
G(1) = 4a -3(a+1) = 0 → a = 3; b = -(3+1) = - 4
Второй
ax^4+bx^3+1 = ax^4-(a+1) * x^3+1 = (x-1)^2* g(x) , где g(x) - некоторый многочлен.
Продифференцируем обе части равенства:
F'(x) = 4ax^3-3(a+1)x^2 = 2(x-1) * g(x) + (x-1)^2 * g'(x) = (x-1) * r(x), где r(x) - некоторый многочлен.
Но тогда F'(x) так же делится на (x-1) , то есть по теореме Безу:
F'(1) = 4a-3(a+1) = 0 → a = 3; b = -(3+1) = - 4
Третий
По обобщенной теореме Виета в данном уравнении:
x1 * x2 * x3 * x4 = 1\a
x1 * x2 * x3 + x1 * x2 * x4 + x4 * x2 * x3 + x1 * x4 * x3 = 0
x1 * x2 + x1 * x3 + x1 * x4 + x2 * x3 + x2 * x4 + x3 * x4 = 0
Учитывая, что x1 = x2 = 1 имеем:
x3 + x4 +2 * x3 * x4 = 0
1 + 2 * x3 + 2 * x4 + x3 * x4 = 0
Умножаем первое уравнение на 2 и вычитаем из него второе :
3 * x3 * x4 -1 = 0
x3 * x4 = 1/3
x1 * x2 * x3 * x4 =1^2 * 1/3 = 1/3 = 1/a → a = 3; b = -4