Решение: Обозначим искомые числа за (х) и (у), тогда сумма этих чисел равна: х+у=120 40% первого числа составляет: 40%*х :100%=0,4*х=0,4х 30% второго числа составляет: 30%*у :100%=0,3*у=0,3у Сумма этих чисел равна: 0,4х+0,3у=41 Решим два уравнения, которые представляют систему уравнений: х+у=120 0,4х+0,3у=41 Из первого уравнения найдём значение (х) х=120-у подставим значение (х) во второе уравнение: 0,4*(120-у) +0,3у=41 48 -0,4у +0,3у=41 -0,1у=41-48 -0,1у=-7 у= -7 : -0,1 у=70 - второе число х=120-70=50 - первое число
Обозначим искомые числа за (х) и (у), тогда сумма этих чисел равна:
х+у=120
40% первого числа составляет:
40%*х :100%=0,4*х=0,4х
30% второго числа составляет:
30%*у :100%=0,3*у=0,3у
Сумма этих чисел равна:
0,4х+0,3у=41
Решим два уравнения, которые представляют систему уравнений:
х+у=120
0,4х+0,3у=41
Из первого уравнения найдём значение (х)
х=120-у подставим значение (х) во второе уравнение:
0,4*(120-у) +0,3у=41
48 -0,4у +0,3у=41
-0,1у=41-48
-0,1у=-7
у= -7 : -0,1
у=70 - второе число
х=120-70=50 - первое число
ответ: Искомые числа 50 и 70
I. Если два последних числа одинковые, то складываем их и получаем новое число.
II. Иначе, берём среде-арифметическое двух последних чисел, и если получается нецелое значение, отбрасываем дробную часть после запятой.
Вот что получится:
4, 3.
По (II) получаем : (4+3)/2 = 3.5 ==> 3
4, 3, 3,
По (I) получаем : 3+3 = 6
4, 3, 3, 6,
По (II) получаем : (3+6)/2 = 4.5 ==> 4
4, 3, 3, 6, 4,
По (II) получаем : (6+4)/2 = 5
4, 3, 3, 6, 4, 5,
По (II) получаем : (4+5)/2 = 4.5 ==> 4
Далее получится: 4, 3, 3, 6, 4, 5, 4, 4,8,6,7,6,6,12,9,10,9,9,18...