1) log1/2(3x-5)=-1 всё равно что 1/2^(-1)=3x-5, отсюда 3x-5=2, 3x=7, x=7/3 2) Если в обеих частях стоят логарифмы по одному основанию, то их можно убрать 3x-5=x^2-3; x^2-3x+2=0 - квадратное уравнение, корни 1 и 2 3)Возводим основание (2) в степень 2 (после знака равно): 2^2=x^2-3x; x^2-3x-4=0 Корни: -1 и 4
4) Применяем свойство логарифмов: сумма логарифмов равна логарифму от произведения: log2(x)+log2(x-3)=log2(x^2-3x)=2; 2^2=x^2-3x; x^2-3x-4=0 - корни -1 и 4
5)lg - логарифм по основанию 10. Решаем: lg(2x)-2lg(x-3)=0, lg(2x)=lg((x-3)^2) - по свойству логарифмов (мы вносим близстоящий множитель в выражение под логарифмом уже как степень)
2x=(x-3)^2; 2x=x^2-6x+9; x^2-8x-9=0 - квадратное уравнение. Корни: -1 и 9.
Ой, забыл проверочку сделать. Она заключается в том, что выражение под логарифмом должно быть положительным. Почему? Да потому что сколько ты ни возводи основание в степерь, отрицательного числа не получится.
2) Корень 1 не подходит, т. к. 3*1-5=-2 - а так делать нельзя. ответ только 2. 4) Корень -1 не подходит, т. к. под логарифмом получается отрицательное число. 5) Та же история.
На сегодняшний день математика является одним из важных предметов. Мы ее используем везде: в магазине, считая количество предметов, расчет ведется во всем и всегда. Моя мама работет инженером-проектировщиком, ее работа тесно связанна с расчетами. Если она ошибется и не правильно рассчитает как построить дом, какую площадь займет дом, то это будет катастрофа, как для заказчиков, так и все вокруг пострадают. Мой папа работает на железной дороге и его профессия тоже обязывает хорошо считать, необходимо знать какое расстояние проедит поезд, какой расход, какое количество пассажиров он сможет перевести. Если нарушить это, то приведет к большим неприятностям. Я считаю, что всем необходимо изучать математику и быть внимательными.
2) Если в обеих частях стоят логарифмы по одному основанию, то их можно убрать
3x-5=x^2-3; x^2-3x+2=0 - квадратное уравнение, корни 1 и 2
3)Возводим основание (2) в степень 2 (после знака равно): 2^2=x^2-3x; x^2-3x-4=0
Корни: -1 и 4
4) Применяем свойство логарифмов: сумма логарифмов равна логарифму от произведения: log2(x)+log2(x-3)=log2(x^2-3x)=2;
2^2=x^2-3x; x^2-3x-4=0 - корни -1 и 4
5)lg - логарифм по основанию 10. Решаем: lg(2x)-2lg(x-3)=0, lg(2x)=lg((x-3)^2) - по свойству логарифмов (мы вносим близстоящий множитель в выражение под логарифмом уже как степень)
2x=(x-3)^2; 2x=x^2-6x+9; x^2-8x-9=0 - квадратное уравнение.
Корни: -1 и 9.
Ой, забыл проверочку сделать. Она заключается в том, что выражение под логарифмом должно быть положительным. Почему? Да потому что сколько ты ни возводи основание в степерь, отрицательного числа не получится.
2) Корень 1 не подходит, т. к. 3*1-5=-2 - а так делать нельзя. ответ только 2.
4) Корень -1 не подходит, т. к. под логарифмом получается отрицательное число.
5) Та же история.