В каждой вершине куба написано целое число. За один ход к двум числам, написанным на концах некоторого ребра, можно прибавить по 1. Раскрасим вершины в шахматном порядке:
В каждой вершине куба написано целое число. За один ход к двум числам, написанным на концах некоторого ребра, можно прибавить по 1. Раскрасим вершины в шахматном порядке:
Какие величины являются инвариантами процесса?
Чётность суммы всех чисел
Разность сумм белых чисел и чёрных чисел
Чётность разности сумм белых чисел и чёрных чисел
Чётность суммы чисел на передней грани
Чётность разности сумм чисел на передней и задней гранях
Чётность произведения всех чисел
Какие величины являются инвариантами процесса?
Чётность суммы всех чисел
Разность сумм белых чисел и чёрных чисел
Чётность разности сумм белых чисел и чёрных чисел
Чётность суммы чисел на передней грани
Чётность разности сумм чисел на передней и задней гранях
Главное в этой задаче число - 999. Что бы ты не умножил на него- всё равно получишь результат, который обязательно будет делиться на 9.
Например:
388*999= 387612 (совершенно случайное число, как видишь)
Теперь делим его на 9.
Идеально! Получается 43068, да и еще без всякого остатка!
То, что мы умножаем 999 на 1000 ничего не изменит. Думаю, ты догадываешься, почему.. Оно ведь тоже делится на 9 из-за тех же 999!
Как видишь, из-за того, что всё в итоге умножили на 999, результат, который получался до этого числа, не имеет ровно никакого значения. Главное, он обязательно будет делиться на 9.
Задание
В каждой вершине куба написано целое число. За один ход к двум числам, написанным на концах некоторого ребра, можно прибавить по 1. Раскрасим вершины в шахматном порядке:
В каждой вершине куба написано целое число. За один ход к двум числам, написанным на концах некоторого ребра, можно прибавить по 1. Раскрасим вершины в шахматном порядке:
Какие величины являются инвариантами процесса?
Чётность суммы всех чисел
Разность сумм белых чисел и чёрных чисел
Чётность разности сумм белых чисел и чёрных чисел
Чётность суммы чисел на передней грани
Чётность разности сумм чисел на передней и задней гранях
Чётность произведения всех чисел
Какие величины являются инвариантами процесса?
Чётность суммы всех чисел
Разность сумм белых чисел и чёрных чисел
Чётность разности сумм белых чисел и чёрных чисел
Чётность суммы чисел на передней грани
Чётность разности сумм чисел на передней и задней гранях
Чётность произведения всех чисел
Пошаговое объяснение:
Например:
388*999= 387612 (совершенно случайное число, как видишь)
Теперь делим его на 9.
Идеально! Получается 43068, да и еще без всякого остатка!
То, что мы умножаем 999 на 1000 ничего не изменит. Думаю, ты догадываешься, почему.. Оно ведь тоже делится на 9 из-за тех же 999!
Как видишь, из-за того, что всё в итоге умножили на 999, результат, который получался до этого числа, не имеет ровно никакого значения. Главное, он обязательно будет делиться на 9.
Так что, очевидно
ответ: 9.