Пошаговое объяснение:
1) R1 «иметь один и тот же остаток от деления на 5»; M1 множество натуральных чисел.
2) R2 «быть равным»; M2 множество натуральных чисел.
3) R3 «жить в одном городе»; M3 множество людей.
4) R4 «быть знакомым»; M4 множество людей.
5) R5 {(a,b):(a-b) - чётное; M5 множество чисел {1,2,3,4,5,6,7,8,9}.
6) R6 {(a,b):(a+b) - чётное; M6 множество чисел {1,2,3,4,5,6,7,8,9}.
7) R7 {(a,b):(a+1) - делитель (a+b)} ; M7 - множество {1,2,3,4,5,6,7,8,9}.
8) R8 {(a,b):a - делитель (a+b),a≠1}; M8 - множество натуральных чисел.
9) R9 «быть сестрой»; M9 - множество людей.
10) R10 «быть дочерью»; M10 - множество людей.
Треугольник ABC задан координатами своих вершин: A(2, 4) B(9, 5) C(6. 0).
Найдем:
а)уравнение и длину высоты BD
Уравнение прямой проходящей через две точки с координатами (х₁;у₁) и (х₂;у₂)
Уравнение АС:
-4(x-2)=4(y-2)
x+y-6=0
n₁(1;1)- нормальный вектор прямой АС.
Координаты нормального вектора прямой ВД n₂(-1;1)
так как прямые перпендикулярны, то нормальные векторы ортогональны, значит их скалярное произведение должно быть равно 0.
Уравнение прямой ВД : -х+у+с=0 значение с найдем, подставив в данное уравнение координаты точки В.
-9+5+с=0, с=4
Уравнение прямой ВД: -х+у+4=0
Найдем координату точки Д как точки пересечения прямых АС и ВД, решаем систему уравнений:
Сложим уравнения: 2у-2=0. у=1, тогда х=-у+6=-1+6=5
Координата точки Д (5;1) Длина ВД=√(5-9)²+(1-5)²=√32=4√2
б)уравнение и длину медианы BM
Координаты точки М как середины отрезка АС: х=(2+6)/2, у=(4+0)/2
М(4;2)
Уравнение прямой ВМ как прямой, проходящей через две точки, заданные своими координатами имеет вид:
или 3х-5у-2=0
ВМ=√(4-9)²+(2-5)²=√34
в)угол α между высотой BD и медианой BM
Вектор BD имеет координаты (-4;-4), вектор ВМ имеет координаты (-5;-3)
BD·BM=|BD|·|BM|·cosα ⇒
г)уравнение биссектрис внутреннего и внешнего углов при вершине A
длина стороны АВ=√(9-2)²+(5-4)²=√50, длина стороны АС=√(6-2)²+(0-4)²=4√2
Биссектриса АК делит сторону на отрезки, пропорциональные прилежащим сторонам:
ВК:КС=АВ:АС, ВК:ВС=(√50):(4√2)=5/4
Координаты точки К, как точки делящей отрезок ВС в отношении 5|4
Уравнение биссектрисы АК как прямой проходящей через две точки А и К:
нормальный вектор прямой АК - биссектрисы внутренннего угла А: n₃(1:3)
нормальный вектор биссектрисы внешнего угла, перпендикулярной биссектрисе АК, имеет координаты n₄=(-3:1), так как должно быть: n₃·n₄=0
Тогда уравнение биссектрисы внешнего угла -3х+у+с=0
значение с найдем подставив в данное уравнение координаты точки А:
3(-2)+4+с=0, с=2
уравнение биссектрисы внешнего угла -3х+у+2=0
Сори если не верно
Пошаговое объяснение:
1) R1 «иметь один и тот же остаток от деления на 5»; M1 множество натуральных чисел.
2) R2 «быть равным»; M2 множество натуральных чисел.
3) R3 «жить в одном городе»; M3 множество людей.
4) R4 «быть знакомым»; M4 множество людей.
5) R5 {(a,b):(a-b) - чётное; M5 множество чисел {1,2,3,4,5,6,7,8,9}.
6) R6 {(a,b):(a+b) - чётное; M6 множество чисел {1,2,3,4,5,6,7,8,9}.
7) R7 {(a,b):(a+1) - делитель (a+b)} ; M7 - множество {1,2,3,4,5,6,7,8,9}.
8) R8 {(a,b):a - делитель (a+b),a≠1}; M8 - множество натуральных чисел.
9) R9 «быть сестрой»; M9 - множество людей.
10) R10 «быть дочерью»; M10 - множество людей.
Треугольник ABC задан координатами своих вершин: A(2, 4) B(9, 5) C(6. 0).
Найдем:
а)уравнение и длину высоты BD
Уравнение прямой проходящей через две точки с координатами (х₁;у₁) и (х₂;у₂)
Уравнение АС:
-4(x-2)=4(y-2)
x+y-6=0
n₁(1;1)- нормальный вектор прямой АС.
Координаты нормального вектора прямой ВД n₂(-1;1)
так как прямые перпендикулярны, то нормальные векторы ортогональны, значит их скалярное произведение должно быть равно 0.
Уравнение прямой ВД : -х+у+с=0 значение с найдем, подставив в данное уравнение координаты точки В.
-9+5+с=0, с=4
Уравнение прямой ВД: -х+у+4=0
Найдем координату точки Д как точки пересечения прямых АС и ВД, решаем систему уравнений:
Сложим уравнения: 2у-2=0. у=1, тогда х=-у+6=-1+6=5
Координата точки Д (5;1) Длина ВД=√(5-9)²+(1-5)²=√32=4√2
б)уравнение и длину медианы BM
Координаты точки М как середины отрезка АС: х=(2+6)/2, у=(4+0)/2
М(4;2)
Уравнение прямой ВМ как прямой, проходящей через две точки, заданные своими координатами имеет вид:
или 3х-5у-2=0
ВМ=√(4-9)²+(2-5)²=√34
в)угол α между высотой BD и медианой BM
Вектор BD имеет координаты (-4;-4), вектор ВМ имеет координаты (-5;-3)
BD·BM=|BD|·|BM|·cosα ⇒
г)уравнение биссектрис внутреннего и внешнего углов при вершине A
длина стороны АВ=√(9-2)²+(5-4)²=√50, длина стороны АС=√(6-2)²+(0-4)²=4√2
Биссектриса АК делит сторону на отрезки, пропорциональные прилежащим сторонам:
ВК:КС=АВ:АС, ВК:ВС=(√50):(4√2)=5/4
Координаты точки К, как точки делящей отрезок ВС в отношении 5|4
Уравнение биссектрисы АК как прямой проходящей через две точки А и К:
нормальный вектор прямой АК - биссектрисы внутренннего угла А: n₃(1:3)
нормальный вектор биссектрисы внешнего угла, перпендикулярной биссектрисе АК, имеет координаты n₄=(-3:1), так как должно быть: n₃·n₄=0
Тогда уравнение биссектрисы внешнего угла -3х+у+с=0
значение с найдем подставив в данное уравнение координаты точки А:
3(-2)+4+с=0, с=2
уравнение биссектрисы внешнего угла -3х+у+2=0
Пошаговое объяснение:
Сори если не верно