1.Предел функции- называется некоторое число b при x-а
2.(F1)
(F2)
(F3)
3.1.о предельном переходе в равенстве
2.о предельном переходе в неравенстве
3.Предел постоянной равен самой постоянной.
4.функция не может иметь двух различных пределов в
одной точке.
5.Если каждое слагаемое алгебраической суммы функций имеет предел при , то и алгебраическая сумма имеет предел при , причем предел алгебраической суммы равен алгебраической сумме пределов.
6.Если каждый из сомножителей произведения конечного числа функций имеет предел при , то и произведение имеет предел при, причем предел произведения равен произведению пределов.
7. Если функции f(x) и g(x) имеют предел ,
причем , то и их частное имеет предел при , причем предел частного равен частному пределов.
4.Бесконечно большая функция ... Число называется пределом функции на бесконечности или при , если для любого существует число такое, что для всех из того, что , выполняется неравенство .
если имеется ввиду сколько было в бочках первоначально, то ответ 164 и 82
Пошаговое объяснение:
Обозначим количество бензина во второй бочке за х литров. Тогда в первой бочке будет 2х литров, так как в первой бензина в 2 раза больше.
По условию из первой бочки отлили 50 л: 2х - 50,
во вторую бочку добавили 32 л: х + 32,
после чего количество бензина в обеих бочках уравнялось:
2 х - 50 = х + 32.
Перенесем известные величины на одну сторону:
2 х - х = 32 + 50.
х = 82.
Во второй бочке 82 литра, а в первой: 82 * 2 = 164 л.
ответ: 164 л и 82 л.
1.Предел функции- называется некоторое число b при x-а
2.(F1)
(F2)
(F3)
3.1.о предельном переходе в равенстве
2.о предельном переходе в неравенстве
3.Предел постоянной равен самой постоянной.
4.функция не может иметь двух различных пределов в
одной точке.
5.Если каждое слагаемое алгебраической суммы функций имеет предел при , то и алгебраическая сумма имеет предел при , причем предел алгебраической суммы равен алгебраической сумме пределов.
6.Если каждый из сомножителей произведения конечного числа функций имеет предел при , то и произведение имеет предел при, причем предел произведения равен произведению пределов.
7. Если функции f(x) и g(x) имеют предел ,
причем , то и их частное имеет предел при , причем предел частного равен частному пределов.
4.Бесконечно большая функция ... Число называется пределом функции на бесконечности или при , если для любого существует число такое, что для всех из того, что , выполняется неравенство .