В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
esman2
esman2
05.03.2023 04:27 •  Математика

МАТЕМАТИКА В ЖИЗНИ 6 Составь выражения, найди их значения.
Айна готовится к конкурсу рисунков О космосе. Она пришла
в магазин канцтоваров и стала рассматривать ценники. По-
моги ей вычислить.
000000
000000
392 тг
490 тг
294 тг
а) Какова общая стоимость двух коробок красок, трёх набо-
ров Кисточек и четырёх палитр?
6) На сколько стоимость двух коробок красок и трёх наборов
Кисточек дороже двух палитр?
в) Во сколько раз набор кисточек дешевле пяти коробок красок?​

Показать ответ
Ответ:
ArtemkaCrash
ArtemkaCrash
26.08.2022 07:29

ответ:  N = 10

Т.к. в N-ичной системе счисления присутствует число 7 (и, соответственно, цифра 7), то основание системы больше 7, т.е. N > 7.

\frac{}{ABCABC} _N=(A*N^5+B*N^4+C*N^3+A*N^2+B*N^1+C*N^0)_{10}=(N^3+1)(A*N^2+B*N+C)_{10}

Так как 7 - простое число, то надо рассмотреть 2 случая: 1) (N^3+1)_{10}\:\vdots \: 7_{10} 2) (A*N^2+B*N+C)_{10}\:\vdots \: 7_{10} ∀ цифр A, B, C < N

1) N^3+1 \equiv 0\: (mod\: 7)\\ N^3 \equiv 6\: (mod\: 7)

Представим N в виде x+7k, где k,x∈N∪{0}, x∈[0,6]. Подставим:

(x+7k)^3 \equiv 6\: (mod\: 7)\\ (x^3+3*7x^2k+3*7^2xk^2+7^3k^3) \equiv 6\: (mod\: 7)\\ x^3 \equiv 6\: (mod\: 7)\\

Последовательно подставляя все возможные значения x в полученное уравнение, получаем, что оно верно при x = 3, x = 5 и x = 6.

Получаем 3 серии решений: N = 3 + 7k, N = 5 + 7k, N = 6 + 7k, k∈N, откуда наименьшее N в данном случае, с учетом условия N > 7, равно 3 + 7 = 10

2) Так как утверждение должно быть верно для ∀ цифр A, B, C < N, то оно будет верно и для наборов (1, 0, 0) и (1, 0, 1).

Тогда: \left \{ {{N^2 \equiv 0\: (mod\: 7)} \atop {N^2+1 \equiv 0\: (mod\: 7)}} \right. \Rightarrow \left \{ {{N^2 \equiv 0\: (mod\: 7)} \atop {N^2 \equiv 6\: (mod\: 7)}} \right.

При этом 0\not\equiv 6\:(mod\:7). Значит система сравнений не имеет решений. А значит не существует такого N, чтобы условие выполнялось

Значит и ответом будет N = 10

0,0(0 оценок)
Ответ:
Вопросникыыы
Вопросникыыы
19.04.2020 02:26
Дано: y = \frac{2x^2+1}{x^2} ;
Исследовать функцию и построить график.

Решение:

1) Функция не определена при обращении в ноль знаменателя, т.е. x ≠ 0 .

D(f) ≡ R \ {0} ≡ ( -\infty ; 0 )U( 0 ; +\infty ) ;

2) В функции встречаются только чётные степени аргумента, а значит она чётная. Докажем это:

y(-x) = \frac{ 2(-x)^2 + 1 }{ (-x)^2 } = \frac{2x^2+1}{x^2} = y(x) ;

Найдём первую производную функции y(x) :

y'(x) = ( \frac{2x^2+1}{x^2} )' = ( \frac{ 2x^2 }{x^2} + \frac{1}{x^2} )' = ( 2 + x^{-2} )' = -2 x^{-3} ;

y'(x) = -\frac{2}{x^3} ;

При x = 0, производная y'(x) – не определена, как и сама функция, при всех остальных значениях аргумента функция и её первая производная определены и конечны, а значит функция непрерывная на всей области определения D(f) – на всей числовой прямой, кроме ноля.

3) Функция не определена при x = 0 . Это точка разрыва. При этом её значение стремится к положительной бесконечности, что легко доказать:

\lim_{x \to 0} y(x) = \lim_{x \to 0} \frac{2x^2+1}{x^2} = \lim_{x \to 0} 2 + \lim_{x \to 0} \frac{1}{x^2} = 2 + \infty = +\infty ;

Если приравнять функцию к нолю, получим:

y(x) = 0 ;

\frac{2x^2+1}{x^2} = 0 ;

2 + \frac{1}{x^2} = 0 ;

( \frac{1}{x} )^2 = -2 – что невозможно ни при каких действительных значениях аргумента;

Значит, никаких пересечений графика с осями координат нет.

4. Найдем асимптоты y(x).

По найденному в (3) пределу, ясно, что линия x = 0 – является вертикальной двухсторонней асимптотой графика функции y(x) .

Посмотрим, что происходит с функцией y(x) при устремлении аргумента к ± \infty :

\lim_{x \to \infty} y(x) = \lim_{x \to \infty} \frac{2x^2+1}{x^2} = \lim_{x \to \infty} 2 + \lim_{x \to \infty} \frac{1}{x^2} = 2 + 0 = 2 ;

Значит, уходя на бесконечность обоих знаков график функции y(x) имеет двунаправленную горизонтальную асимптоту y = 2 ;

Наклонных асимптот нет, и не может быть, так как есть горизонтальные с обеих сторон.

5. Первая производная функции y(x) :

y'(x) = -\frac{2}{x^3} – положительна при отрицательных значениях аргумента и отрицательна при положительных х ;

Значит, функция возрастает на ( -\infty ; 0 ) и убывает на ( 0 ; +\infty ) ;

Уравнение y'(x) = 0 т.е. y'(x) = -\frac{2}{x^3} – не имеет решений, а значит, у функции нет экстремумов, т.е. конечных локальных минимумов или максимумов.

6. Найдём вторую производную функции y(x) :

y''(x) = (y'(x))' = ( -\frac{2}{x^3} )' = -2 ( x^{-3} )' = -2*(-3)*x^{-4} ;

y''(x) = \frac{6}{x^4} 0 при любых значениях аргумента ;

В силу общей положительности второй производной – график функции всегда «улыбается», т.е. он вогнут, или, говоря иначе: он закручивается против часовой стрелки на всём своём протяжении при проходе по числовой оси аргументов слева направо.

Поскольку выгнутость повсеместна, то и точек перегиба не может быть. И их нет, соответственно.

7.

При х = ± 1 : : : y(x) = 3 ;

При х = ± 2 : : : y(x) = 2.25 ;

При х = ± 1/2 : : : y(x) = 6 ;

Строим график:

Построить график функции y = (2x^2+1)/x^2 по следующему алгоритму: 1) область определения функции 2)
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота