Пирамида правильная, значит боковые грани пирамиды - равные равнобедренные треугольники, AS=BS=CS, а плоские углы при вершине S равны. Тогда площадь боковой поверхности пирамиды SABC равна Ssabc=3*(1/2)AS²*Sinα (где α - плоский угол при вершине). Площадь боковой поверхности пирамиды SKLM равна Ssklm=(1/2)SK*SL*Sinα+(1/2)SL*SM*Sinα+(1/2)SM*SK*Sinα= (1/2)*(1/3)*(1/4)*AS²*Sinα+(1/2)*(1/4)*(1/2)*AS²*Sinα+(1/2)*(1/2)*(1/3)*AS²*Sinα=(1/2)*AS²*Sinα(1/12+1/8+1/6)=(9/24)*(1/2)*AS²*Sinα. Тогда отношение боковых поверхностей пирамид Ssklm/Ssabc=(9/24)/3=3/24=1/8. Это ответ.
Используем формулу: (U/V)' = (U'V - UV')/V²
f'(x) =(3x² * eˣ -x³*eˣ)/e²ˣ = eˣ(3x² - x³)/e²ˣ = (3x² - x³)/eˣ
2)значение f' (пи/4), если f(x)=3tg(2x-π/2) = -3Ctg2x
f'(x) = 6/ Sin2x
3)тангенс угла наклона касательной у=-4х+5
tgα = y' = -4
4)максимум функции
f'(x) = -3x² + 1
-3x² + 1 = 0
3x² = 1
x² = 1/3
х = +-1/√3
-∞ -1/√3 1/√3 +∞
- + - Это знаки производной.
х = -1/√3 - это точка минимума
х = 1/√3 - это точка максимума
у = -3*(1/√3)³ + 1/√3 = -1/√3 + 1/√3 = 0 - это максимум функции.
Тогда площадь боковой поверхности пирамиды SABC равна
Ssabc=3*(1/2)AS²*Sinα (где α - плоский угол при вершине).
Площадь боковой поверхности пирамиды SKLM равна
Ssklm=(1/2)SK*SL*Sinα+(1/2)SL*SM*Sinα+(1/2)SM*SK*Sinα=
(1/2)*(1/3)*(1/4)*AS²*Sinα+(1/2)*(1/4)*(1/2)*AS²*Sinα+(1/2)*(1/2)*(1/3)*AS²*Sinα=(1/2)*AS²*Sinα(1/12+1/8+1/6)=(9/24)*(1/2)*AS²*Sinα.
Тогда отношение боковых поверхностей пирамид
Ssklm/Ssabc=(9/24)/3=3/24=1/8. Это ответ.