Для того чтобы найти экстремум функции найдем сперва ее производную
Теперь приравняем производную к нолю и решим полученное уравнение 6x(x-1)=0 6х=0 х-1=0 х=0 х=1 Нанесем полученные точки на ось Ох и определим знак функции. ОБЯЗАТЕЛЬНО НАРИСОВАТЬ. таким образом получим три промежутка 1. (-беск; 0): у(-2)=6*(-2)(-2-1)=-12*(-3)=36, >0 2. [0;1]: y(0,5)=6*0,5*(0,5-1)=3*(-0,5)-1,5 <0 3.(1;беск): y(2) 6*2(2-1)=12*(1)=12, >0 И так видим что при прохождении точек х=0 и х=1 функции меняет свой знак следовательно эти точки и являются экстремумами функции ответ:х=0 и х=1
Пусть функция определена на множестве E Пусть где . Понятно, что для любого на области от (то есть: ) выполняется . Следовательно, для , выполняется .
Получили, что для любого есть , на области которой выполняется (Проще говоря: ). Следовательно - . Что и требовалось доказать. Для нужно отдельно доказать предел .
Теперь в чём проблема самого вопроса: мы только что доказали непрерывность функции на любом подмножестве . Но! Множество натуральных чисел тоже подмножество , значит тоже непрерывна, получается - доказали что непрерывна на области определения? Известно, что тоже непрерывна на области определения, но , понятное дело, не определена на ! Потому вопрос, ИМХО, поставлен не верно (претензия не к тебе, а скорее к преподавателям твоим). Правильно задать вопрос указывая то множесто точек, которое интересует: к примеру "непрерывна на " или, "непрерывна на отрезке "... Тем более, что есть понятие "равномерная непрерывность" - свойство области, а не так, как "непрерывность" - свойство точки. Отсюда и непонимание. А то получается: спрашивают об области, а проверяют точку. Будут вопросы - пиши.
P.S. Исправил ошибки в наборе символов. Текста много :)
Теперь приравняем производную к нолю и решим полученное уравнение
6x(x-1)=0
6х=0 х-1=0
х=0 х=1
Нанесем полученные точки на ось Ох и определим знак функции.
ОБЯЗАТЕЛЬНО НАРИСОВАТЬ. таким образом получим три промежутка
1. (-беск; 0): у(-2)=6*(-2)(-2-1)=-12*(-3)=36, >0
2. [0;1]: y(0,5)=6*0,5*(0,5-1)=3*(-0,5)-1,5 <0
3.(1;беск): y(2) 6*2(2-1)=12*(1)=12, >0
И так видим что при прохождении точек х=0 и х=1 функции меняет свой знак следовательно эти точки и являются экстремумами функции
ответ:х=0 и х=1
Пусть где .
Понятно, что для любого на области от (то есть: ) выполняется .
Следовательно, для , выполняется .
Получили, что для любого есть , на области которой выполняется
(Проще говоря:
). Следовательно - .
Что и требовалось доказать.
Для нужно отдельно доказать предел .
Теперь в чём проблема самого вопроса: мы только что доказали непрерывность функции на любом подмножестве . Но! Множество натуральных чисел тоже подмножество , значит тоже непрерывна, получается - доказали что непрерывна на области определения? Известно, что тоже непрерывна на области определения, но , понятное дело, не определена на !
Потому вопрос, ИМХО, поставлен не верно (претензия не к тебе, а скорее к преподавателям твоим). Правильно задать вопрос указывая то множесто точек, которое интересует: к примеру "непрерывна на " или, "непрерывна на отрезке "...
Тем более, что есть понятие "равномерная непрерывность" - свойство области, а не так, как "непрерывность" - свойство точки. Отсюда и непонимание.
А то получается: спрашивают об области, а проверяют точку.
Будут вопросы - пиши.
P.S. Исправил ошибки в наборе символов. Текста много :)