В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
mila320
mila320
04.01.2023 17:51 •  Математика

Материал может быть взят из интернета ! 25 ​

Показать ответ
Ответ:
NikolaTesla666
NikolaTesla666
10.10.2020 14:34

Відповідь:

Для вирішення даного диференціального рівняння другого порядку ми можемо скористатися методом варіації довільної сталої.

Позначимо y' = v. Тоді ми отримаємо два зв'язаних диференціальних рівняння:

v' + 2y' = 0 (1)

y' = v (2)

Підставимо вираз y' = v з рівняння (2) в рівняння (1):

v' + 2v = 0

Це рівняння можна вирішити шляхом розділення змінних:

dv/v = -2dx

Інтегруємо обидві частини:

ln|v| = -2x + C1

де C1 - це стала інтеграції.

Використовуючи вираз y' = v, отримуємо:

ln|y'| = -2x + C1

Піднесемо обидві частини до експоненти:

|y'| = e^(-2x + C1)

Розглядаючи абсолютну величину, ми можемо записати:

y' = ±e^(-2x + C1)

Де C1 - це довільна константа.

Тепер інтегруємо обидві частини рівняння:

∫ y' dx = ±∫ e^(-2x + C1) dx

y = ±∫ e^(-2x) * e^(C1) dx

y = ±e^(C1) * ∫ e^(-2x) dx

y = ±e^(C1) * (-1/2) * e^(-2x) + C2

де C2 - це інша константа інтегрування.

Таким чином, загальний розв'язок диференціального рівняння y'' + 2y' = 0 має вигляд:

y = ±Ce^(-2x) + D

де C = e^(C1) і D = C2.

Враховуючи початкові умови y(0) = 0 і y'(0) = 1, ми можемо знайти конкретні значення констант C і D.

Коли x = 0, ми маємо:

y(0) = ±Ce^(-2*0) + D = ±C + D = 0

y'(0) = -2C = 1

Відсилюємо, що -2C = 1, отже, C = -1/2.

Підставимо значення C у рівняння y(0) = ±

Покрокове пояснення:

0,0(0 оценок)
Ответ:
Генгстер
Генгстер
19.12.2020 18:15

Трикутники

Геометричні фігури з трьома сторонами

За кутами

Гострокутний трикутник

Прямокутний трикутник

Тупокутний трикутник

За сторонами

Рівносторонній трикутник

Рівнобедрений трикутник

Різносторонній трикутник

Властивості трикутників

Сума кутів в трикутнику

Нерівність у трікутнику

Теорема Піфагора

Теорема синусів

Теорема косинусів

Конструкції трикутників

За сторонами

За заданими довжинами сторін

За заданими довжинами однієї сторони і двох кутів

За кутами

За заданими мірками кутів

За заданими відношеннями мір кутів

Трикутники та подібність

Подібні трикутники

Коефіцієнт подібності

Властивості подібних трикутників

Трикутники та геометричні центри

Центр тяжіння

Центр описаного кола

Центр вписаного кола

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота