Обратим внимание на два момента 1. числа натуральные от 1 до 200 2. Числа четное и нечетное на карточке, отличаются на 1. Есть одно разложение этих чисел на сто карточек 1-2, 3-4, 5-6, 197-198, 199-200 итого сто пар - других разложений нет , иначе бы не выполнялся пункт что разница на каждой карточке равна 1 Сумма на карточках 3 (1*4-1), 7 (2*4-1), 11 (3*4 -1), 395 (99*4-1), 399 (4*100-1) то есть можно вывести общую формулу 4*k-1 (k⊂[1 100]) Надо теперь определить сумма 21-ой карточки равно 2017 или нет сложим 21 карточку (4*k₁-1)+(4*k₂-1)+(4*k₃-1)+...+(4*k₂₀-1)+(4*k₂₁-1)=2017 4*(k₁+k₂+k₃+...+k₂₀+k₂₁)-21=2017 4*(k₁+k₂+k₃+...+k₂₀+k₂₁)=2038 k₁+k₂+k₃+...+k₂₀+k₂₁= 2038/4 = 509.5 не может быть , так как слева сумма натуральных чисел и сумма натуральное число, а справа дробь
Пусть x, y – искомые трёхзначные числа. По условию 7xy = 1000x + y.
Первый Разделим обе части равенства на x: 7y = 1000 + y/x. Число y/x положительно и меньше 10, так как y ≤ 999, x ≥ 100. Поэтому 1000 < 7y < 1010. Деля это неравенство на 7, получаем 1426/7 < y < 1442/7. Так как y – целое число, y = 143 или 144. Подставляя y = 143 в равенство, получаем 7x·143 = 1000x + 143. Решая это уравнение, находим x = 143. Если y = 144, то аналогичное уравнение даёт x = 18, а это число – не трёхзначное.
Второй Перепишем равенство в виде 1000x = (7x – 1)y. Числа x и 7x – 1 взаимно просты. Значит, 7x – 1 – делитель числа 1000. Но 7x – 1 ≥ 7·100 – 1 = 699, поэтому 7x – 1 = 1000, откуда x = 143. Подставляя в исходное уравнение, находим y = 143. ответ 143 и 143.
Есть одно разложение этих чисел на сто карточек
1-2, 3-4, 5-6, 197-198, 199-200 итого сто пар - других разложений нет , иначе бы не выполнялся пункт что разница на каждой карточке равна 1
Сумма на карточках 3 (1*4-1), 7 (2*4-1), 11 (3*4 -1), 395 (99*4-1), 399 (4*100-1) то есть можно вывести общую формулу 4*k-1 (k⊂[1 100])
Надо теперь определить сумма 21-ой карточки равно 2017 или нет
сложим 21 карточку
(4*k₁-1)+(4*k₂-1)+(4*k₃-1)+...+(4*k₂₀-1)+(4*k₂₁-1)=2017
4*(k₁+k₂+k₃+...+k₂₀+k₂₁)-21=2017
4*(k₁+k₂+k₃+...+k₂₀+k₂₁)=2038
k₁+k₂+k₃+...+k₂₀+k₂₁= 2038/4 = 509.5
не может быть , так как слева сумма натуральных чисел и сумма натуральное число, а справа дробь
Пусть x, y – искомые трёхзначные числа. По условию 7xy = 1000x + y.
Первый Разделим обе части равенства на x: 7y = 1000 + y/x. Число y/x положительно и меньше 10, так как y ≤ 999, x ≥ 100. Поэтому 1000 < 7y < 1010. Деля это неравенство на 7, получаем 1426/7 < y < 1442/7. Так как y – целое число, y = 143 или 144.
Подставляя y = 143 в равенство, получаем 7x·143 = 1000x + 143. Решая это уравнение, находим x = 143.
Если y = 144, то аналогичное уравнение даёт x = 18, а это число – не трёхзначное.
Второй Перепишем равенство в виде 1000x = (7x – 1)y. Числа x и 7x – 1 взаимно просты. Значит, 7x – 1 – делитель числа 1000. Но
7x – 1 ≥ 7·100 – 1 = 699, поэтому 7x – 1 = 1000, откуда x = 143. Подставляя в исходное уравнение, находим y = 143.
ответ
143 и 143.