Для начала преобразуем уравнение формулы косинуса двойного угла:
Вводим замену
Помним, что t - это не просто переменная , а косинус, который пробегает лишь отрезок [-1,1], то есть
Чтобы найти необходимые границы для косинуса,
рассмотрим рисунок. Красным обозначен интересующий отрезок. Когда же на данном отрезке будет только один корень? Ну, граничные случаи видны сразу. Это и . Эти прямые проводим через данные точки, они выделены синим и красным. Почему это граничные точки? Пусть t заключено между этими прямыми. Если t = -1, то, как видно, всего одна точка общая с прямой t=-1 и окружностью(напомню, что прямая вида t = a - задаёт значение а косинуса угла на окружности). Тем более, если такие прямые лежат между синей и красной(эта область заштрихована синим). Здесь показана одна из таких прямых(зелёная). Как видим, она имеет с данным отрезком только одну точку пересечения, что нам и нужно. А вот прямая нам не подходит. В этой точке прямая пересекает наш отрезок дважды(в верхней полуокружности и в нижней). Значит, заведомо будет две серии решений, в каждой из которых по корню будут содержаться на этом отрезке(а нам нужен только один корень на отрезке). Соответственно, в правой области(она заштрихована красным), ТЕМ БОЛЕЕ это не выполняется. Помимо этого можно увидеть, что прямая t = 1 тоже нам подходит(ровно одна точка пересечения с окружностью).
То есть, нам подходят только такие t, что и .
Рассмотрим теперь квадратное уравнение. Для начала стоит рассмотреть "изолированные" точки .
1)Пусть . Подставляя в квадратное уравнение, найдём отсюда соответствующее а:
Проверка:
Первый корень явно лишний(косинус не может достигать -2). То есть, видим, у нас есть лишь уравнение , устраивающее нас(его серия решений содержит единственный корень на отрезке) - a = 2 условию задачи удовлетворяет.
2)
Проверяем: или Здесь уже к корню t = -1 добавился корень t = 0. Уравнение вновь имеет единственный корень на нашем отрезке(видно на круге). То есть, каждое t дало по одному корню на отрезке, в сумме - два корня для исходного уравнения. a = -2 нам абсолютно не подходит.
3)Пусть теперь . Здесь надо быть поаккуратнее, поскольку необходимо отслеживать число корней квадратного уравнения и промежутки, в которых они находятся. Количество корней зависит от дискриминанта. Найдём его.
а)Если , то корней квадратное уравнение не имеет - на нет и суда нет. б)Если , то уравнение имеет один корень. Найдём его.
Подсталвяем параметр в наше квадратное уравнение: - такое значение t вписывается в наш промежуток для t, поэтому условию задачи удовлетворяет.
в) Самый сложный случай. Уравнение имеет два корня. Как же тогда получить в точности один корень на нужном отрезке? ответ прост: один корень должен вписываться в промежуток для t(там гарантированно будет одно решение на отрезке), а второй - не принадлежать ему(тогда гарантированно второй корень t не даст прибавку в подходящих x). Смотрите второй рисунок: либо меньший корень не принадлежит отрезку, либо больший.
Записываем для данной ситуации необходимые и достаточные условия. или Замечу, что при этом условие D > 0 уже не требуется: оно выполнено автоматически(если выполняются указанные системы, то это "опускает" параболу ниже оси OX, поэтому уравнение автоматически имеет два корня, а, стало быть, и D > 0). Находим теперь значения параболы в указанных точках.
Решаем первую систему: ∈
Вторая система решений не имеет. Добавляя к этому интервалу ещё точки и (не вошедшие сюда), записываем ответ: ∈,
Вводим замену
Помним, что t - это не просто переменная , а косинус, который пробегает лишь отрезок [-1,1], то есть
Чтобы найти необходимые границы для косинуса,
рассмотрим рисунок. Красным обозначен интересующий отрезок. Когда же на данном отрезке будет только один корень? Ну, граничные случаи видны сразу. Это и . Эти прямые проводим через данные точки, они выделены синим и красным. Почему это граничные точки? Пусть t заключено между этими прямыми. Если t = -1, то, как видно, всего одна точка общая с прямой t=-1 и окружностью(напомню, что прямая вида t = a - задаёт значение а косинуса угла на окружности). Тем более, если такие прямые лежат между синей и красной(эта область заштрихована синим). Здесь показана одна из таких прямых(зелёная). Как видим, она имеет с данным отрезком только одну точку пересечения, что нам и нужно. А вот прямая нам не подходит. В этой точке прямая пересекает наш отрезок дважды(в верхней полуокружности и в нижней). Значит, заведомо будет две серии решений, в каждой из которых по корню будут содержаться на этом отрезке(а нам нужен только один корень на отрезке). Соответственно, в правой области(она заштрихована красным), ТЕМ БОЛЕЕ это не выполняется. Помимо этого можно увидеть, что прямая t = 1 тоже нам подходит(ровно одна точка пересечения с окружностью).
То есть, нам подходят только такие t, что и .
Рассмотрим теперь квадратное уравнение.
Для начала стоит рассмотреть "изолированные" точки .
1)Пусть . Подставляя в квадратное уравнение, найдём отсюда соответствующее а:
Проверка:
Первый корень явно лишний(косинус не может достигать -2). То есть, видим, у нас есть лишь уравнение , устраивающее нас(его серия решений содержит единственный корень на отрезке) - a = 2 условию задачи удовлетворяет.
2)
Проверяем:
или
Здесь уже к корню t = -1 добавился корень t = 0. Уравнение вновь имеет единственный корень на нашем отрезке(видно на круге). То есть, каждое t дало по одному корню на отрезке, в сумме - два корня для исходного уравнения. a = -2 нам абсолютно не подходит.
3)Пусть теперь . Здесь надо быть поаккуратнее, поскольку необходимо отслеживать число корней квадратного уравнения и промежутки, в которых они находятся. Количество корней зависит от дискриминанта. Найдём его.
а)Если , то корней квадратное уравнение не имеет - на нет и суда нет.
б)Если , то уравнение имеет один корень. Найдём его.
Подсталвяем параметр в наше квадратное уравнение:
- такое значение t вписывается в наш промежуток для t, поэтому условию задачи удовлетворяет.
в) Самый сложный случай. Уравнение имеет два корня. Как же тогда получить в точности один корень на нужном отрезке? ответ прост: один корень должен вписываться в промежуток для t(там гарантированно будет одно решение на отрезке), а второй - не принадлежать ему(тогда гарантированно второй корень t не даст прибавку в подходящих x). Смотрите второй рисунок: либо меньший корень не принадлежит отрезку, либо больший.
Записываем для данной ситуации необходимые и достаточные условия.
или
Замечу, что при этом условие D > 0 уже не требуется: оно выполнено автоматически(если выполняются указанные системы, то это "опускает" параболу ниже оси OX, поэтому уравнение автоматически имеет два корня, а, стало быть, и D > 0).
Находим теперь значения параболы в указанных точках.
Решаем первую систему:
∈
Вторая система решений не имеет.
Добавляя к этому интервалу ещё точки и (не вошедшие сюда), записываем
ответ: ∈,
24 = 2 * 2 * 2 * 3
80 = 2 * 2 * 2 * 2 * 5
Общие множители чисел: 2 ; 2 ; 2
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (24 ; 80) = 2 * 2 * 2 = 8
НОК
80 = 2 * 2 * 2 * 2 * 5
24 = 2 * 2 * 2 * 3
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (24 ; 80) = 2 * 2 * 2 * 2 * 5 * 3 = 240
НОД (24 ; 80) = 8
НОК (24 ; 80) = 240
2)
78 = 2 * 3 * 13
25 = 5 * 5
Общие множители чисел: 1
НОД (78 ; 25) = 1
78 = 2 * 3 * 13
25 = 5 * 5
НОК (78 ; 25) = 2 * 3 * 13 * 5 * 5 = 1950
3)
324 = 2 * 2 * 3 * 3 * 3 * 3
348 = 2* 2 * 3 * 29
НОД (324 ; 348) = 2 * 2 * 3 = 12
НОК (324 ; 348) = 2 * 2 * 3 * 29 * 3 * 3 * 3 = 9396
4)
80 = 2 * 2 * 2 * 2 * 5
240 = 2 * 2 * 2 * 2 * 3 * 5
360 = 2 * 2 * 2 * 3 * 3 * 5
НОД (80 ; 240 ; 360) = 2 * 2 * 2 * 5 = 40
НОК (80 ; 240 ; 360) = 2 * 2 * 2 * 3 * 3 * 5 * 2 = 720
НОД (80 ; 240 ; 360) = 40
НОК (80 ; 240 ; 360) = 720