--------------------------------------------------------------------> x
Функция возрастает там, где её производная положительна. А значит, она возрастает на промежутке . Из перечня ответов полностью в этот промежуток входит только .
ответ: 3.
А2.
Найдём производную данной функции.
Найдём нули производной.
По теореме Виета:
Определим знак производной на каждом промежутке.
+ - +
---------------------------------------------------------------> x
Функция убывает там, где её производная отрицательна. В нашем случае, на промежутке . Ему соответствует вариант номер 2.
ответ: 2.
А3.
В точках минимума функция из убывания переходит в возрастание. На данном графике 4 такие точки (см. вложение).
ответ: 1.
А4.
Найдём производную данной функции.
Найдём нули производной.
Точки максимума соответствуют точкам смены знака производной с плюса на минус. Проверим это, определив её знак на каждом промежутке:
+ -
--------------------------------------------------------------------> x
Полученные знаки соответствуют изложенному выше условию. Значит, 2 является точкой максимума функции.
ответ: 4.
А5.
Найдём производную.
Найдём нули производной.
У производной нашлось 2 нуля. В то же время, производная равна нулю в точках экстремума графика функции. А значит, функция имеет две точки экстремума.
ответ: 1.
А6.
Точки максимума на графике производной соответствуют точкам смены знака производной с плюса на минус. На нашем графике это происходит в точке с абсциссой 3.
ответ: 2.
А7.
Найдём производную функции.
Найдём нули производной.
У производной нашлось 2 нуля. Найдём её знак на каждом промежутке.
+ - +
--------------------------------------------------------> x
Точки минимума соответствуют точкам смены знака производной с минуса на плюс. Такой точке соответствует 2.
ответ: 4.
А8.
На заданном отрезке функция имеет одну точку максимума. Она соответствует значению функции, равному трём.
А1.
Найдём производную данной функции.
Найдём нули производной.
Определим знак производной на каждом промежутке.
- +
--------------------------------------------------------------------> x
Функция возрастает там, где её производная положительна. А значит, она возрастает на промежутке . Из перечня ответов полностью в этот промежуток входит только .
ответ: 3.
А2.
Найдём производную данной функции.
Найдём нули производной.
По теореме Виета:
Определим знак производной на каждом промежутке.
+ - +
---------------------------------------------------------------> x
Функция убывает там, где её производная отрицательна. В нашем случае, на промежутке . Ему соответствует вариант номер 2.
ответ: 2.
А3.
В точках минимума функция из убывания переходит в возрастание. На данном графике 4 такие точки (см. вложение).
ответ: 1.
А4.
Найдём производную данной функции.
Найдём нули производной.
Точки максимума соответствуют точкам смены знака производной с плюса на минус. Проверим это, определив её знак на каждом промежутке:
+ -
--------------------------------------------------------------------> x
Полученные знаки соответствуют изложенному выше условию. Значит, 2 является точкой максимума функции.
ответ: 4.
А5.
Найдём производную.
Найдём нули производной.
У производной нашлось 2 нуля. В то же время, производная равна нулю в точках экстремума графика функции. А значит, функция имеет две точки экстремума.
ответ: 1.
А6.
Точки максимума на графике производной соответствуют точкам смены знака производной с плюса на минус. На нашем графике это происходит в точке с абсциссой 3.
ответ: 2.
А7.
Найдём производную функции.
Найдём нули производной.
У производной нашлось 2 нуля. Найдём её знак на каждом промежутке.
+ - +
--------------------------------------------------------> x
Точки минимума соответствуют точкам смены знака производной с минуса на плюс. Такой точке соответствует 2.
ответ: 4.
А8.
На заданном отрезке функция имеет одну точку максимума. Она соответствует значению функции, равному трём.
ответ: 2.
ДАНО
Y= (x²+5)/(x²-5)
1.Область определения - Х∈(-∞;- √5)∪(-√5;√5)∪(√5;+∞)
2. Пересечение с осью Х - нет.
3. Пересечение с осью У. У(0) = -1.
4. Поведение на бесконечности.limY(-∞) = 1 limY(+∞) = 1,
limY(-√5-) = +∞, limY(-√5+) = -∞, limY(√5-) = -∞, limY(√5+) = +∞,
5. Исследование на чётность.Y(-x) = Y(x).
Функция чётная.
6. Производная функции.
7. Корень при Х=0. Максиммум – Ymax(0)=-1.
Возрастает - Х∈(-∞;-√5)∪(-√5;0) , убывает = Х∈(0;√5)∪(√5;+∞).
8. Вторая производная - Y"(x) = ?
9. Точек перегиба - нет.
Выпуклая “горка» Х∈(-√5;√5),Вогнутая – «ложка» Х∈(-∞;-√5))∪(√5;+∞).
10. График в приложении.