Мистер фокс нарисовал квадрат со стороной 1. затем он разделил обе его горизонтальные стороны на 120 равных частей и провел 119 вертикальных отрезков, соединяющих соответствующие точки. после этого он разбил обе вертикальные стороны на 150 равных частей и провел горизонтальные отрезки, соединяющие соответствующие точки. сколько разных (то есть имеющих разные стороны) квадратов можно увидеть на получившемся рисунке? с из
Посчитаем количество квадратов по горизонтальной стороне стороне
an = 120/120 = 1 - последний (n-й) член ариф. прогрессии
a₁= 12/120 -первый член ариф. прогрессии (для горизонтальной стороны)
d = 12/120 - разность ариф. прогрессии (для горизонтальной стороны)
n - количество членов ариф. прогрессии (количество квадратов)
an = a₁ + (n-1)*d
1 = 12/120 + (n-1)*12/120
1= 12/120 + (12/120)*n - 12/120
1 = 12/120*n
n = 1 : (12/120) = 1*120/12 = 10 - количество членов ариф. прогрессии (количество квадратов) - ВЕРНО
ответ: 10 квадратов