Обозначим слона как a а его номер a1 . Значит у нас имеется слоны А1 А2 А3 А4 А5 а6 А7 а8 вес всех этих слонов равен А1+ А2+А3+А4+А5+А6+А7+ А8 РОВНО К
Пошаговое объяснение:А3 РОВНО А1 +А2
А4 =А2+ А1 +А2
А5 = 3А2+2А1
А6= 5А2+3А1
А7= 8А2+5А1
А8 =13А2+8А1
Откуда
А1+А2+А3+А4+А5+А6+А7+А8=33А2+21А1
После чего делим их на три кучки в Кучке С будут слоны А7,А5,А6 , в Кучке В будут слоны А3, А4, А8 . Можно заметить что слон А3 равен маме слонов А1 +А2. Поэтому можно сначала взвесить кучки А и В а потом в Кучке В заменить слона А3 на слонов А1 + А2. И при этом если кучки равны значит никто не похудел а если какая то меньше значит там какой-то слон похудел
За 4 взвешивания можно найти 1 монету из 81. Сначала я объясню, как найти 1 монету из 3 за 1 взвешивание. Это просто - сравниваем две монеты. Какая легче, та и есть. А если они одинаковые, то фальшивая - третья. Теперь делаем так. 1) Делим 81 монету на 3 кучки по 27. Сравниваем две. Какая легче, там и фальшивая. Если равны - третья. 2) Делим 27 монет на 3 кучки по 9. Тоже самое. 3) Делим 9 монет на 3 кучки по 3. Тоже самое. 4) Делим 3 монеты на 3 кучки по 1. Тоже самое. Так мы за 4 взвешивания находим 1 легкую монету из 81. Более интересный вопрос - сколько может быть монет максимально, если мы не знаем, фальшивая монета легче или тяжелее? Для 3 взвешиваний ответ - 12 монет. Для 4 - пока не знаю.
Обозначим слона как a а его номер a1 . Значит у нас имеется слоны А1 А2 А3 А4 А5 а6 А7 а8 вес всех этих слонов равен А1+ А2+А3+А4+А5+А6+А7+ А8 РОВНО К
Пошаговое объяснение:А3 РОВНО А1 +А2
А4 =А2+ А1 +А2
А5 = 3А2+2А1
А6= 5А2+3А1
А7= 8А2+5А1
А8 =13А2+8А1
Откуда
А1+А2+А3+А4+А5+А6+А7+А8=33А2+21А1
После чего делим их на три кучки в Кучке С будут слоны А7,А5,А6 , в Кучке В будут слоны А3, А4, А8 . Можно заметить что слон А3 равен маме слонов А1 +А2. Поэтому можно сначала взвесить кучки А и В а потом в Кучке В заменить слона А3 на слонов А1 + А2. И при этом если кучки равны значит никто не похудел а если какая то меньше значит там какой-то слон похудел
Сначала я объясню, как найти 1 монету из 3 за 1 взвешивание.
Это просто - сравниваем две монеты. Какая легче, та и есть.
А если они одинаковые, то фальшивая - третья.
Теперь делаем так.
1) Делим 81 монету на 3 кучки по 27. Сравниваем две.
Какая легче, там и фальшивая. Если равны - третья.
2) Делим 27 монет на 3 кучки по 9. Тоже самое.
3) Делим 9 монет на 3 кучки по 3. Тоже самое.
4) Делим 3 монеты на 3 кучки по 1. Тоже самое.
Так мы за 4 взвешивания находим 1 легкую монету из 81.
Более интересный вопрос - сколько может быть монет максимально, если мы не знаем, фальшивая монета легче или тяжелее?
Для 3 взвешиваний ответ - 12 монет. Для 4 - пока не знаю.