Натуральные числа — это целые положительные числа. Здесь только 18.
Целые числа — это натуральные числа, ноль, а также числа, противоположные натуральным. Целые числа: 18, 0. 10
Рациональные числа — числа, которые могут быть представлены дробью, у которой числитель — целое число, а знаменатель — натуральное. Периодические дроби рациональны. Рациональные числа: -73, 18, -1.176176, 0, 4.1, 11+5/7, 9/7, 3.14, 5.02002.
Иррациональные числа — это действительные числа, не являющиеся рациональными: 3+π, π/9, -sqrt(97).
Пошаговое объяснение:Найдем площадь основания параллелепипеда S=аbsin60°=2·2·√3/2=2√3.
Рассмотрим треугольник, сторонами которого являются: меньшая диагональ нижнего основания параллелепипеда, меньшая диагональ параллелепипеда и высота параллелепипеда.
Этот треугольник прямоугольный с острыми углами по 45°. Значит его катеты равны.
Меньшая диагональ основания (ромба) делит ромб на два равносторонних треугольника, значит меньшая диагональ равна 6 см и высота также равна 6 см.
Натуральные числа — это целые положительные числа. Здесь только 18.
Целые числа — это натуральные числа, ноль, а также числа, противоположные натуральным. Целые числа: 18, 0. 10
Рациональные числа — числа, которые могут быть представлены дробью, у которой числитель — целое число, а знаменатель — натуральное. Периодические дроби рациональны. Рациональные числа: -73, 18, -1.176176, 0, 4.1, 11+5/7, 9/7, 3.14, 5.02002.
Иррациональные числа — это действительные числа, не являющиеся рациональными: 3+π, π/9, -sqrt(97).
ответ:4√3дм^3 або 4000√3 см^3
Пошаговое объяснение:Найдем площадь основания параллелепипеда S=аbsin60°=2·2·√3/2=2√3.
Рассмотрим треугольник, сторонами которого являются: меньшая диагональ нижнего основания параллелепипеда, меньшая диагональ параллелепипеда и высота параллелепипеда.
Этот треугольник прямоугольный с острыми углами по 45°. Значит его катеты равны.
Меньшая диагональ основания (ромба) делит ромб на два равносторонних треугольника, значит меньшая диагональ равна 6 см и высота также равна 6 см.
V=Sh=2·2√3=4√3 cм³.
ответ: 4√3 см³.