В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
nataliasuflik
nataliasuflik
14.05.2022 17:10 •  Математика

Множество значений функции f(x)=-x'4 -8x²+17.

Показать ответ
Ответ:
saidos1000
saidos1000
10.10.2020 21:09

E(f(x))=(-∞; 17]

Пошаговое объяснение:

f(x)= -x⁴-8·x²+17 = 17-(x⁴+8·x²)=17-(x⁴+2·4·x²+4²-4²)=17+4²-(x⁴+2·4·x²+4²)=

=17+16-(x²+4)²=33-(x²+4)²

Так как x²+4≥4, то (x²+4)²≥4²=16 и поэтому

33-(x²+4)² ≤ 33 - 16 = 17

Отсюда, наибольшее значение функции f(x)= -x⁴-8·x²+17 равно 17.

Так как x --> ±∞ выражение 33-(x²+4)² --> -∞, то множеством значений E(f(x)) функции f(x)= -x⁴-8·x²+17 будет (-∞; 17].

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота