Пошаговое объяснение:
1) Новая сторона a квадрата:
(a·(100+30)%)/100%=1,3a
Первоначальная площадь квадрата:
S=a²
Новая площадь квадрата:
S(нов)=(1,3a)²=1,69a²
(100%·1,69a²)/a²=169% составляет новая площадь квадрата, когда 100% составляет первоначальная площадь квадрата.
169%-100%=69% - на столько процентов увеличилась площадь квадрата.
2) Новая сторона a квадрата:
(a·(100-10)%)/100%=0,9a
S(нов)=(0,9a)²=0,81a²
(100%·0,81a²)/a²=81% составляет новая площадь квадрата, когда 100% составляет первоначальная площадь квадрата.
100%-81%=19% - на столько процентов уменьшилась площадь квадрата.
Известно, что длина а в 7 1\2 раза больше ширины.
Найдем длину фигуры.
a = b * 7 1/2 = 5 1/3 * 7 1/2 = 16/3 * 15/2 = 40 см.
2. Условием задачи задано, что высота h параллелепипеда составляет 30% длины.
30% = 30/100 = 3/10 величины.
р = 3/10 * a = 3/10 * 40 = 3 * 4 = 12 см.
3. Вычислим объем прямоугольного параллелепипеда.
Объем равен произведению длины, ширины и высоты.
V = a * b * h = 16/3 * 40 * 12 = 16 * 40 * 4 = 2560 см3.
ответ: объем равен 2560 см3.
Пошаговое объяснение:
1) Новая сторона a квадрата:
(a·(100+30)%)/100%=1,3a
Первоначальная площадь квадрата:
S=a²
Новая площадь квадрата:
S(нов)=(1,3a)²=1,69a²
(100%·1,69a²)/a²=169% составляет новая площадь квадрата, когда 100% составляет первоначальная площадь квадрата.
169%-100%=69% - на столько процентов увеличилась площадь квадрата.
2) Новая сторона a квадрата:
(a·(100-10)%)/100%=0,9a
Первоначальная площадь квадрата:
S=a²
Новая площадь квадрата:
S(нов)=(0,9a)²=0,81a²
(100%·0,81a²)/a²=81% составляет новая площадь квадрата, когда 100% составляет первоначальная площадь квадрата.
100%-81%=19% - на столько процентов уменьшилась площадь квадрата.