Мотоциклист догоняет велосипедиста. Сейчас между ними 23,3 км. Скорость велосипедиста 11,5 км/ч. Найдите скорость мотоциклиста, если известно, что мотоциклист догонит велосипедиста через 0,6 ч.
Я хочу что бы люди ко мне относились : хорошо,приятно,не грубили не говорили плохие вещи,не обязывали , что бы просто люди мне не грабили. Но что бы они так относились я тоже должен(а) хорошо всё им делать, а не радости наговаривать. Как пословица как аукница так и откликниться. Все люди бывают разными но ты один. Поэтому нужно стораться не кому не грубить! Есть люди которые сделали плохую вещь и довольно, а так нельзя! Он же не хочет что б к нему так относились.и нужно соблюдать правила,неважно где в школе,на работе,на улице. Самое главное знать если хочешь сто бы к тебе хорошо относились отно
Общее количество учеников во всех трёх классах равно 28+24+20 = 72. Так как 72 делится на 3, то равенство количества учеников во всех трёх классах возможно - в каждом классе будет по 72/3 = 24 ученика.
Из условия задачи не ясно, сколько переводов из класса в класс допускается - один или два (три перевода и более могут быть заменены эквивалентными одним или двумя), поэтому вторую часть задачи решим исходя из более жёсткого ограничения (один перевод):
Задача имеет решение, например, для троек:
21, 25, 29
21, 26, 31
19, 22, 25
20, 21, 22
и много других.
Третью часть задачи решим исходя из более мягкого ограничения (два перехода):
Задача не имеет решения, например, для троек:
21, 22, 24
22, 25, 27
23, 25, 28
и так далее (во всех указанных случаях общее число учеников не делится на 3).
Указанные ответы во второй и третьей части универсальны - годятся как для жёсткого, так и для мягкого ограничения (при сдаче решения про эти ограничения лучше вообще не упоминать, они даны только для разъяснения)
Общее количество учеников во всех трёх классах равно 28+24+20 = 72. Так как 72 делится на 3, то равенство количества учеников во всех трёх классах возможно - в каждом классе будет по 72/3 = 24 ученика.
Из условия задачи не ясно, сколько переводов из класса в класс допускается - один или два (три перевода и более могут быть заменены эквивалентными одним или двумя), поэтому вторую часть задачи решим исходя из более жёсткого ограничения (один перевод):
Задача имеет решение, например, для троек:
21, 25, 29
21, 26, 31
19, 22, 25
20, 21, 22
и много других.
Третью часть задачи решим исходя из более мягкого ограничения (два перехода):
Задача не имеет решения, например, для троек:
21, 22, 24
22, 25, 27
23, 25, 28
и так далее (во всех указанных случаях общее число учеников не делится на 3).
Указанные ответы во второй и третьей части универсальны - годятся как для жёсткого, так и для мягкого ограничения (при сдаче решения про эти ограничения лучше вообще не упоминать, они даны только для разъяснения)