Возьмём для простоты вычислений числа n-1, n, n+1. Пусть произведение этих чисел — это k-тая степень какого-то числа: . Зная, что два последовательных натуральных числа всегда взаимно простые, получаем, что число n взаимно простое с числами n-1, n+1, то есть n не имеет общих множителей в разложении с числами n-1 и n+1. Значит, каждый множитель n находится в k-той степени — само число n — это k-тая степень. Но тогда и (n-1)(n+1) = n²-1 является k-той степенью. Если возвести число n в квадрат, оно всё равно останется числом в степени k: . Но тогда n²-1 и n² — это два последовательных числа, являющиеся k-той степенью. Если взглянуть на графики степенных функций, становится ясно, что такого быть не может. Значит, и произведение трех последовательных натуральных чисел не является степенью натурального числа.
Возьмём для простоты вычислений числа n-1, n, n+1. Пусть произведение этих чисел — это k-тая степень какого-то числа: . Зная, что два последовательных натуральных числа всегда взаимно простые, получаем, что число n взаимно простое с числами n-1, n+1, то есть n не имеет общих множителей в разложении с числами n-1 и n+1. Значит, каждый множитель n находится в k-той степени — само число n — это k-тая степень. Но тогда и (n-1)(n+1) = n²-1 является k-той степенью. Если возвести число n в квадрат, оно всё равно останется числом в степени k: . Но тогда n²-1 и n² — это два последовательных числа, являющиеся k-той степенью. Если взглянуть на графики степенных функций, становится ясно, что такого быть не может. Значит, и произведение трех последовательных натуральных чисел не является степенью натурального числа.