Схема Бернулли. Есть набор из n = 4 независимых случайных событий, происходящих с вероятностью p = 0.1 (и не происходящих с вероятностью q = 1 - p = 0.9). Тогда вероятность, что событие произойдёт ровно k раз, равна P(k) = C_n^k p^k q^(n - k), где C_n^k - биномиальный коэффициент из n по k.
E[k] = 0 * P(0) + 1 * P(1) + 2 * P(2) + 3 * P(3) + 4 * P(4) = 0.4 (это совпадает с pn, как и должно быть) E[k^2] = 0 * P(0) + 1 * P(1) + 4 * P(2) + 9 * P(3) + 16 * P(4) = 0.52 D[k] = E[k^2] - E[k]^2 = 0.52 - 0.4^2 = 0.36 (это совпадает с npq, как и должно быть)
(Интегральная) функция распределения F(x) равна вероятности, что k <= x F(x) = 0 при x < 0 F(x) = 0.6561 при 0 <= x < 1 F(x) = 0.6561 + 0.2916 = 0.9477 при 1 <= x < 2 F(x) = 0.9477 + 0.0486 = 0.9963 при 2 <= x < 3 F(x) = 0.9963 + 0.0036 = 0.9999 при 3 <= x < 4 F(x) = 1 при x >= 4
6 целых 2/5 = 6,4 7 целых 1/4 = 7,25
х + (6,4 - 4,91) = 5,35 у + (9.31 - 7,25) = 8,2
х + 1,49 = 5,35 у + 2,06 = 8,2
х = 5,35 - 1,49 у = 8,2 - 2,06
х = 3,86 у = 6,14
(7,43-2ц3/25)+х=7 (8,61-3ц3/4)+у=12,1
2 целых 3/25 = 2,12 3 целых 3/4 = 3,75
(7,43 - 2,12) + х = 7 (8,61 - 3,75) + у = 12,1
5,31 + х= 7 4,86 + у = 12,1
х = 7 - 5,31 у = 12,1 - 4,86
х = 1,69 у = 7,24
Есть набор из n = 4 независимых случайных событий, происходящих с вероятностью p = 0.1 (и не происходящих с вероятностью q = 1 - p = 0.9).
Тогда вероятность, что событие произойдёт ровно k раз, равна
P(k) = C_n^k p^k q^(n - k), где C_n^k - биномиальный коэффициент из n по k.
P(0) = 1 * 1 * 0.9^4 = 0.6561
P(1) = 4 * 0.1 * 0.9^3 = 0.2916
P(2) = 6 * 0.1^2 * 0.9^2 = 0.0486
P(3) = 4 * 0.1^3 * 0.9 = 0.0036
P(4) = 1 * 0.1^4 * 1 = 0.0001
E[k] = 0 * P(0) + 1 * P(1) + 2 * P(2) + 3 * P(3) + 4 * P(4) = 0.4 (это совпадает с pn, как и должно быть)
E[k^2] = 0 * P(0) + 1 * P(1) + 4 * P(2) + 9 * P(3) + 16 * P(4) = 0.52
D[k] = E[k^2] - E[k]^2 = 0.52 - 0.4^2 = 0.36 (это совпадает с npq, как и должно быть)
(Интегральная) функция распределения F(x) равна вероятности, что k <= x
F(x) = 0 при x < 0
F(x) = 0.6561 при 0 <= x < 1
F(x) = 0.6561 + 0.2916 = 0.9477 при 1 <= x < 2
F(x) = 0.9477 + 0.0486 = 0.9963 при 2 <= x < 3
F(x) = 0.9963 + 0.0036 = 0.9999 при 3 <= x < 4
F(x) = 1 при x >= 4