Положение центра вписанной окружности определим, узнав высоту трапеции.
Тогда r = 4/2 = 2. Окружность, описанная около трапеции, является одновременно и описанной около треугольника, стороны которого - диагональ, боковая сторона и большее основание. Диагональ равна:
Радиус описанной окружности равен:
Площадь треугольника равна: S = (1/2)*8*4 = 16 кв.ед. Тогда Так как центр описанной окружности лежит на оси симметрии трапеции. то определим его положение: H+Δ = √(R² - 1²) = √( 16.01563-1) = √ 15.01563 = 3.875. Отсюда Δ = 3.875 - 4 = -0,125. Значит, центр этой окружности лежит внутри контура трапеции - на 0,125 выше нижнего основания. ответ: расстояние между центрами вписанной и описанной окружностей равно 2-0,125 = 1,875.
точка о -центр окружности. концы радиусов обозначим а и в. соединим концы радиусов, получим хорду ав. рассмотрим полученный треугольник аов.
он равнобедренный, т.к ао=во = 8 см.. из вершины о проведём высоту он к хорде. получили 2 тр-ка. рассмотрим тр-ник вон. угол нов = 120: 2 = 60 гр., т.к. высота равнобедренного тр-ника делит этот угол пополам. угол вон = 90гр. угол в = 180 -60 -90 =30 гр. высота он лежит против угла 30 гр и равна половине гипотенузы он. во= 8/2 = 4 см.
Тогда r = 4/2 = 2.
Окружность, описанная около трапеции, является одновременно и описанной около треугольника, стороны которого - диагональ, боковая сторона и большее основание.
Диагональ равна:
Радиус описанной окружности равен:
Площадь треугольника равна:
S = (1/2)*8*4 = 16 кв.ед.
Тогда
Так как центр описанной окружности лежит на оси симметрии трапеции. то определим его положение:
H+Δ = √(R² - 1²) = √( 16.01563-1) = √ 15.01563 = 3.875.
Отсюда Δ = 3.875 - 4 = -0,125.
Значит, центр этой окружности лежит внутри контура трапеции - на 0,125 выше нижнего основания.
ответ: расстояние между центрами вписанной и описанной окружностей равно 2-0,125 = 1,875.
ответ:
пошаговое объяснение:
точка о -центр окружности. концы радиусов обозначим а и в. соединим концы радиусов, получим хорду ав. рассмотрим полученный треугольник аов.
он равнобедренный, т.к ао=во = 8 см.. из вершины о проведём высоту он к хорде. получили 2 тр-ка. рассмотрим тр-ник вон. угол нов = 120: 2 = 60 гр., т.к. высота равнобедренного тр-ника делит этот угол пополам. угол вон = 90гр. угол в = 180 -60 -90 =30 гр. высота он лежит против угла 30 гр и равна половине гипотенузы он. во= 8/2 = 4 см.
ответ: 4 см