Раціональні числа — в математиці множина раціональних чисел ℚ визначається як множина нескоротних дробів із цілим чисельником і натуральним знаменником:
{\displaystyle \mathbb {Q} =\left\{{\frac {m}{n}},m\in \mathbb {Z} ,n\in \mathbb {N} \right\}}
або як множина розв'язків рівняння
{\displaystyle nx=m,\quad n\in \mathbb {N} ,\quad m\in \mathbb {Z} },
тобто n — натуральне число, m — ціле число.
Множина раціональних чисел є підмножиною алгебраїчних та дійсних чисел.
Раціональні числа — в математиці множина раціональних чисел ℚ визначається як множина нескоротних дробів із цілим чисельником і натуральним знаменником:
{\displaystyle \mathbb {Q} =\left\{{\frac {m}{n}},m\in \mathbb {Z} ,n\in \mathbb {N} \right\}}
або як множина розв'язків рівняння
{\displaystyle nx=m,\quad n\in \mathbb {N} ,\quad m\in \mathbb {Z} },
тобто n — натуральне число, m — ціле число.
Множина раціональних чисел є підмножиною алгебраїчних та дійсних чисел.