Можно найти несколько пределов данной числовой последовательности. Для этого нужно посмотреть, что произойдет с ней при стремлении к бесконечности с разными знаками, и в "опасных" точках.
"Опасные" точки сразу видны, это: 1) - знаменатель обращается в 0. 2) - по обычаю проверяется эта точка.
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов: (при →∞)
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
(при →∞)
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
(при →∞)
Итак: 1) →+∞ предел равен 2) →-∞ предел равен
3) →0 предел равен:
4) → По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - мы получаем отрицательное основание).
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).
"Опасные" точки сразу видны, это:
1) - знаменатель обращается в 0.
2) - по обычаю проверяется эта точка.
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов:
(при →∞)
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
(при →∞)
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
(при →∞)
Итак:
1) →+∞ предел равен
2) →-∞ предел равен
3) →0 предел равен:
4) →
По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - мы получаем отрицательное основание).
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).
Эта задача на систему линейных уравнений.
Количество частей: в 1 -19, во 2 -15, в 3 - 38.
Золото - х1, серебро - х2 и медь - х3.
(5/19)x1 + (3/15)x2 + (7/38)x3 = 79
(6/19)x1 + (5/15)x2 + (13/38)x3 = 118
(8/19)x1 + (7/15)x2 + (18/38)x3 = 162.
Далее можно двумя путями: 1) оставить дробные коэффициенты, или 2) привести к общему знаменателю.
1) Перепишем систему уравнений в матричном виде и решим его методом Гаусса:
5 /19 3/ 15 7/ 38 79
6/ 19 5/ 15 13/ 38 118
8/ 19 7/ 15 18/ 38 162.
Первую строку делим на 5/ 19:
1 19/ 25 7/ 10 1501/ 5
6/ 19 5/ 15 13/ 38 118
8/ 19 7/ 15 18/ 38 162.
От 2 строки отнимаем 1 строку, умноженную на 6/ 19 ; от 3 строки отнимаем 1 строку, умноженную на 8/ 19:
1 19/ 25 7/ 10 1501/ 5
0 7/ 75 23/ 190 116/ 5
0 11/ 75 17 /95 178/ 5.
Вторую строку делим на 7/ 75:
1 19/ 25 7/ 10 1501/ 5
0 1 345/ 266 1740/ 7
0 11/ 75 17/ 95 178/ 5.
От 1 строки отнимаем 2 строку, умноженную на 19/ 25 ; от 3 строки отнимаем 2 строку, умноженную на 11/ 75:
1 0 - 2/ 7 779/ 7
0 1 345/ 266 1740/ 7
0 0 - 3/ 266 - 6/ 7.
Третью строку делим на (- 3/ 266):
1 0 - 2/ 7 779/ 7
0 1 345/ 266 1740/ 7
0 0 1 76.
К 1 строке добавляем 3 строку, умноженную на 2/ 7 ; от 2 строки отнимаем 3 строку, умноженную на 345/ 266:
1 0 0 133
0 1 0 150
0 0 1 76
ответ: золота 133 кг, серебра 150 кг, меди 76 кг.
2) Аналогично с целыми числами.
2850 2166 1995 855570
3420 3610 3705 1277940
4560 5054 5130 1754460
1 0,76 0,7 300,2
0 -1010,8 -1311 -251256
0 180,5 142,5 37905
1 0 -0,286 111,286
0 -1010,8 -1311 -251256
0 0 91,61 6962,143
1 0 -0,286 111,286
0 1 1,297 248,571
0 0 1 76
1 0 0 133
0 1 0 150
0 0 1 76.