Мы проехали за день около 600 км в понедельник продали 1000 билетов на выставку на 400 м гостинице остались только 50 свободных в этом павильоне находится около 700 экспонатов за месяц мы собрали 150 открыток о нурсултане малый конференц зал вмещает до 200 человек от большой до 400 человек
q₁ = 3; q₂ = -4
Пошаговое объяснение:
Задание
Найдите знаменатель геометрической прогрессии, если
b₁ = 1, S₃ = 13
Решение
Сумма первых трёх членов геометрической прогрессии:
((b₁q²)·q -b₁) /(q-1) = 13, (1)
где b₁q² = b₃
Заменим b₁ в (1) на 1, так как, согласно условию, b₁ = 1:
(q³ - 1)/(q-1) = 13
(q³ - 1) = 13 · (q-1)
Представим разность кубов (в левой части) как произведение разности оснований на неполный квадрат суммы:
(q - 1)·(q²+q+1) = 13 · (q-1)
q²+q+1 = 13
q²+q+1 -13 =0
q²+q-12=0
q₁,₂ = -1/2±√(1/4 +12) = -1/2± 7/2
q₁ = -1/2+ 7/2 = 6/2 = 3
q₂ = -1/2-7/2 = -8/2 = -4
ПРОВЕРКА
1) При q₁ = 3
b₁ = 1, b₂ = 3, b₃ = 9, S₃ = 1+3+9 = 13
2) При q₂ = -4
b₁ = 1, b₂ = -4, b₃ = 16, S₃ = 1 - 4 + 16 = 13
ответ: условию задания удовлетворяют два знаменателя геометрической прогрессии: q₁ = 3 и q₂ = -4.
а) Выносим множитель (-11) за скобки и находим значение выражения:
- 11 * a – 11 * b = - 11 * (а + b) = - 11 * 12 = - 132.
б) Выносим множитель 3 за скобки, а затем выражение в скобках сворачиваем вквадрат суммы чисел a и b, используя формулу сокращенного умножения:
3 * a² + 6 * a * b + 3 b² = 3 * (a² + 2 * a * b + b²) = 3 * (а + b)² = 3 * 12² = 3 * 144 = 432.
в) Выносим множитель (- 10) за скобки, а затем применяем формулу сокращенного умножения для квадрата суммы чисел a и b:
- 10 * a² - 10 * b² - 20 * a * b = - 10 (a² + 2 * a * b + b²) = - 10 * (a + b)² = - 10 * 12² = - 10 * 144 = - 1440.
Пошаговое объяснение: