А)3\4 и 9\12 Чтобы сравнить эти дроби, надо привести их к общему знаменателю. Домножаем 3\4 на 3 и получаем 9\12. Следовательно, дроби равны. 3\4=9\12 Б)7\5 и 3\2 Чтобы сравнить эти дроби, надо найти их целую часть. Делим числитель на знаменатель и выносим целое число: 1 целая 2\5 и 1 целая 1\2. Теперь приводим их к общему знаменателю: 1 целая 4\10 и 1 целая 5\10. Следовательно, вторая дробь больше первой. 7\5<3\2 В)5\6 и 5\8 в этом случае действуем аналогично первому: находим общий знаменатель. 40\48 и 30\48. Следовательно, первая дробь больше второй. 5\6>5\8
3\4=9\12
Б)7\5 и 3\2 Чтобы сравнить эти дроби, надо найти их целую часть. Делим числитель на знаменатель и выносим целое число: 1 целая 2\5 и 1 целая 1\2. Теперь приводим их к общему знаменателю: 1 целая 4\10 и 1 целая 5\10. Следовательно, вторая дробь больше первой.
7\5<3\2
В)5\6 и 5\8 в этом случае действуем аналогично первому: находим общий знаменатель. 40\48 и 30\48. Следовательно, первая дробь больше второй.
5\6>5\8
S = a · b = 90 м² - площадь площадки
Пусть а = х м - ширина, тогда b = (х + 1) м - длина. Уравнение:
х · (х + 1) = 90
х² + х = 90
х² + х - 90 = 0
D = b² - 4ac = 1² - 4 · 1 · (-90) = 1 + 360 = 361
√D = √361 = 19
х₁ = (-1-19)/(2·1) = (-20)/2 = -10 (не подходит, так как < 0)
х₂ = (-1+19)/(2·1) = 18/2 = 9 м - ширина (а)
9 + 1 = 10 м - длина (b)
P = (a + b) · 2 = (9 + 10) · 2 = 19 · 2 = 38 м - периметр площадки
38 : 10 = 3,8 ≈ 4 (округляем до целого) = 4 упаковки материала
ответ: 9 м - меньшая сторона; 10 м - большая сторона; 4 упаковки.