В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

На доске написаны несколько различных чисел. известно, что сумма любых трех написанных чисел рациональна, а сумма любых двух написанных чисел- иррациональна какое наибольшее количество чисел может быть написано на доске? ,

Показать ответ
Ответ:
Вожделорд
Вожделорд
26.08.2020 17:55
Просто число 3.Предположим, что на доске написано не меньше четырёх чисел. Обозначим любые четыре из них через a , b , c , d . Тогда числа a b  c и a b  d будут рациональными. Значит, и их разность, равная (b  c  d) (a b  c) = d  a также будет рациональным числом. Аналогично можно показать, что b  a и c  a будут рациональными. Таким образом, = 1 b a  r , = 2 c a  r , = 3 d a  r , где 1 r , 2 r , 3 r – рациональные числа. Но, поскольку число = 3 1 2 a b  c a  r  r рационально, число a также рационально. Значит, и число = 2 1 a b a  r рационально, что противоречит условию. Итак, на доске не более трёх чисел. Осталось заметить, что на доске могли быть написаны три числа, удовлетворяющие условию, например, 2 , 2 2 , 3 2 .
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота