В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
eX6ToR
eX6ToR
22.03.2020 12:02 •  Математика

На доске записано натуральное число. Каждую минуту Вася заменяет число на сумму кубов его цифр. Докажите, что когда-нибудь у Васи получится то число, которое уже было.

Показать ответ
Ответ:
batya757757
batya757757
15.10.2020 12:41

Докажем, что у Васи когда-нибудь получится число, которое уже было. Посмотрим на числа, в которых не больше четырёх знаков. Каждая цифра в них не больше 9, потому после каждой замены новое число будет не больше, чем (4 * 9^3) = 2916. Значит, у любого числа после Васиной замены будет не менее пяти цифр. Тогда сумма кубов его цифр (пусть их было n) будет не больше (n * 9^3) = (n * 729) < (n * 1000) < (10^(n-1)), значит, количество цифр в числе уменьшится. Так как количество цифр в исходном числе не было бесконечным, когда-нибудь оно уменьшится до четырёхзначного (или меньше), а тогда, не более чем через 9999 операций, оно совпадёт с каким-то из предыдущих, так как не сможет получить больше четырёх знаков.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота