В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Neprostone
Neprostone
26.03.2022 04:31 •  Математика

На доску выписали 20 различных натуральных чисел. оказалось, что среди них 11 чисел делятся на 13, а 13 чисел делятся на 11. докажите, что среди них есть число, большее 500 !

Показать ответ
Ответ:
Светлая26
Светлая26
04.08.2020 22:20

Что мы имеем:  20 чисел, 13 из которых делятся на 11, и 11 чисел, которые делятся на 13. Логично, что есть числа, которые делятся на 13 и на 11. Их 13+11-20=4 числа.  Значит они все делятся на 143. Поскольку это число непарное, то при умножении на не целое число дают остачу, а нам надо целые и натуральные числа, значит умножаем 143 на минимальные натуральные числа.  Минимальное с таких "особенных чисел 143,второе - 286(143*2)(2 - следующее целое число после 1.),третье - 143*3=429,а четвертое - 143*4=572,что явно больше 500 Доказано.

0,0(0 оценок)
Ответ:
Erekcia
Erekcia
04.08.2020 22:20

т.к. 13 чисел делится на 11, и 11 делятся на 13, а всего 20 чисел, то

(11 + 13) - 20 = 4 (числа) делятся и на 11 и на 13

наименьшие натуральные числа, которые делятся и на 11 и на 13:

143, 286, 429, 572

т.к. это наименьшие, то число 572 либо большее число обязательно есть

Что и требовалось доказать.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота