Любой многочлен степени n вида представляется произведением постоянного множителя при старшей степени и n линейных множителей , i=1, 2, …, n, то есть , причем , i=1, 2, …, n являются корнями многочлена.
Эта теорема сформулирована для комплексных корней , i=1, 2, …, n и комплексных коэффициентов , k=0, 1, 2, …, n. Она является основой для разложения любого многочлена на множители.
Если коэффициенты , k=0, 1, 2, …, n – действительные числа, то комплексные корни многочлена ОБЯЗАТЕЛЬНО будут встречаться комплексно сопряженными парами.
К примеру, если корни и многочлена являются комплексно сопряженными, а остальные корни действительные, то многочлен представится в виде , где
Любой многочлен степени n вида представляется произведением постоянного множителя при старшей степени и n линейных множителей , i=1, 2, …, n, то есть , причем , i=1, 2, …, n являются корнями многочлена.
Эта теорема сформулирована для комплексных корней , i=1, 2, …, n и комплексных коэффициентов , k=0, 1, 2, …, n. Она является основой для разложения любого многочлена на множители.
Если коэффициенты , k=0, 1, 2, …, n – действительные числа, то комплексные корни многочлена ОБЯЗАТЕЛЬНО будут встречаться комплексно сопряженными парами.
К примеру, если корни и многочлена являются комплексно сопряженными, а остальные корни действительные, то многочлен представится в виде , где
Из Москвы в 8 часов утра отправился поезд со скоростью 58 км/ч. В 11ч. утра вслед за ним отправился другой поезд со скоростью 64 км/ч. На каком
расстоянии эти поезда будут друг от друга в 3 ч. дня ?
Решение задачи поэтапно:
1 этап)Объяснение
3 часа дня значит 15 часов
2 этап)Решение
1) 15 - 8 = 7 (ч) - время в пути первого поезда;
2) 58 * 7 = 406 (км) - проедет первый поезд за 7 часов;
3) 15 - 11 = 4 (ч) - время в пути второго поезда;
4) 64 * 4 = 256 (км) - проедет второй поезд за 4 часа;
5) 406 - 256 = 150 (км) - расстояние между поездами в 3 часа дня.
Окончательный ответ: 150 км.