Проведем диагональ ВD. Треугольник АВD - равнобедренный с углом при А=60° Отсюда углы при ВD =(180°-60°):2=60° Треугольник АВD=∆ ВСD- равносторонние. ВН - высота. ВН=ВF ∆ НВF - равнобедренный. Угол НВF=60° Углы при НF= по 60° ∆ НВF - равносторонний ВН=ВF= Р∆ ВНF:3=12:3=4 см Высота равностороннего треугольника равна стороне, умноженной на синус 60° ВН=АВ*(√3):2 см АВ=ВН:(√3):2)=8:√3 см Площадь параллелограмма ( а ромб - параллелограмм) равна произведению его смежных сторон, умноженному на синус угла между ними Ѕ ромба= (8:√3)*(√3):2=4 см² Сторону ромба можно найти по теореме Пифагора: АВ=√(ВН²+АН²), где АН=АВ:2. Площадь равна произведению высоты на сторону.
Пошаговое объяснение:
(-3; 2)
°°>x
-3 2
(-1; 4]
°.>x
-1 4
(-0,5; 5)
°°>x
-0,5 5
(-2,5; 1]
°.>x
-2,5 1
(-∞; 6)
°>x
6
(-∞; 2)
°>x
2
(8; +∞)
°>x
8
(-1,5; +∞)
°>x
-1,5
Треугольник АВD - равнобедренный с углом при А=60°
Отсюда углы при ВD =(180°-60°):2=60°
Треугольник АВD=∆ ВСD- равносторонние.
ВН - высота. ВН=ВF
∆ НВF - равнобедренный.
Угол НВF=60°
Углы при НF= по 60°
∆ НВF - равносторонний
ВН=ВF= Р∆ ВНF:3=12:3=4 см
Высота равностороннего треугольника равна стороне, умноженной на синус 60°
ВН=АВ*(√3):2 см
АВ=ВН:(√3):2)=8:√3 см
Площадь параллелограмма ( а ромб - параллелограмм) равна произведению его смежных сторон, умноженному на синус угла между ними
Ѕ ромба= (8:√3)*(√3):2=4 см²
Сторону ромба можно найти по теореме Пифагора:
АВ=√(ВН²+АН²), где АН=АВ:2.
Площадь равна произведению высоты на сторону.