На координатной плоскости через точки А (-3; 3) и В (2; 1) проведены прямые, перпендикулярные оси абсцисс. Сколько из перечисленных точек М (-5; 4), К (-2; 1), С (4; 3), Р (-1; 3), О (0; -4) и Н (-4; -2) расположено между этими прямыми?
1) 1
2) 2
3) 4
4) 3
ответ: 26; 15; 64;250;24
Пошаговое объяснение:
Делаем задания через определенные интегралы и первообразные:
1.
Подставляем в первообразную границы интегрирования:
2.
Подставляем в первообразную границы интегрирования:
3.
Подставляем в первообразную границы интегрирования:
4.
Производим ровно те же операции, что и до этого, так как требуется найти путь у параболы ветвями вверх => интеграл не будет отрицательным.
Подставляем в первообразную границы интегрирования:
5.
Находим первообразную заданной функции:
Ограничивающие прямые - те же границы интегрирования:
-1050, 0, 102 Є Z
2. Множество двухзначных чисел - конечное множество
Множество чётных чисел - бесконечное множество.
3. а) N подмножество Д, б) А подмножество Д, в) В подмножество N
а) N и R пересечение 1, 2
N и А пересечение - нет
N и В пересечение 1; 2; 3
N и Д пересечение 1; 2; 3
А и В пересечение - нет
А и Д пересечение -0,5; 0; 0,5
В и R пересечение 1; 2
А и В объединение -0,5; 0; 0,5; 1; 2; 3; 4; 5
R и N объединение 0; 0,5; 1; 1,5; 2; 3
R и В объединение 0; 0,5; 1; 1,5; 2; 3; 4; 5
4. Множеством чётных чисел A являются числа кратные 2→а=2*n
Множество чисел В являются числа кратные 3 в=3*n
A и В пересечение а*в=2*3*n
A и В объединение 2*n; 3*n
5. 15-1=14 девочек занимаются музыкой и танцами.
10+9=19 мест на музыке и на танцах занимают девочки.
19-14=5 девочек занимаются и музыкой и танцами.
6. 4!=24
7. 3!=6
а) на 2, когда число заканчивается на 6 или на 8 - 2^2=4 числа
б) на 4, 4/2=2 числа
в) на 3 - сумма цифр 1+6+8=15 делится на 3, все 6 чисел кратны 3.
г) на 6 - все чётные числа - 4 числа.
8. 7!/3!=840
9. С(1 по 4)+С(2 по 4)+С(3 по 4)+С(4 по
10. 3!=6+1=7 (1; 2; 3; 2,3; 1,3; 1,2, и 1,2,3)